【题目】如图,抛物线与轴交于两点(在的左侧),与轴交于点, 点与点关于抛物线的对称轴对称.
(1)求抛物线的解析式及点的坐标:
(2)点是抛物线对称轴上的一动点,当的周长最小时,求出点的坐标;
(3)点在轴上,且,请直接写出点的坐标.
【答案】(1) 解析式为,点的坐标为;(2)点的坐标为;(3) 点坐标为或
【解析】
(1)利用待定系数法即可求出n,利用对称性C、D关于对称轴对称即可求出点D坐标.
(2)A,P,D三点在同一直线上时△PAC的周长最小,求出直线AD的解析式即可解决问题.
(3)分两种情形①作DQ∥AC交x轴于点Q,此时∠DQA=∠DAC,满足条件.②设线段AD的垂直平分线交AC于E,直线DE与x的交点为Q′,此时∠Q′DA=′CAD,满足条件,分别求解即可.
解: (1)根据题意得,
解得
抛物线的解析式为
抛物线的对称轴为直线
点与点关于抛物线的对称轴对称
点的坐标为
(2)连接
点与点关于抛物线的对称轴对称.
为定值,
当的值最小
即三点在同一直线上时的周长最小
由解得,
在的左侧,
由两点坐标可求得直线的解析式为
当时,
当的周长最小时,点的坐标为
(3) 点坐标为或
科目:初中数学 来源: 题型:
【题目】为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为x m,绿化带的面积为y m2.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,满足条件的绿化带的面积最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线的对称轴为,且经过点A(2,1),点是抛物线上的动点,的横坐标为,过点作轴,垂足为,交于点,点关于直线的对称点为,连接,,过点A作AE⊥x轴,垂足为E.则当( )时,的周长最小.
A.1B.1.5C.2D.2.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市新建了圆形文化广场,小杰和小浩准备不同的方法测量该广场的半径.
(1)小杰先找圆心,再量半径,请你在图1中,用尺规作图的方法帮小杰找到该广场的圆心(不写作法,保留作图痕迹);
(2)小浩在广场边(如图2)选取、、三根石柱,量得、之间的距离与、之间的距离相等,并测得长为240米,到的距离为5米.请你帮他求出广场的半径;
(3)请你解决下面的问题:如图3,的直径为,弦,是弦上的一个动点,求出的长度范围是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次聚会上,规定每两个人见面必须握手,且握手1次.
(1)若参加聚会的人数为3,则共握手 次;若参加聚会的人数为5,则共握手 次;
(2)若参加聚会的人数为n(n为正整数),则共握手 次;
(3)若参加聚会的人共握手28次,请求出参加聚会的人数.
(4)嘉嘉由握手问题想到了一个数学问题:若线段AB上共有m个点(不含端点A,B),线段总数为多少呢?请直接写出结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,,.
(1)经过A、B、C三点的圆弧所在圆的圆心M的坐标为________.
(2)点D坐标为,连接CD,判断直线CD与⊙M的位置关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD和正方形CEFG的边长分别为a和b,BE和DG相交于点H,连接HC,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确的结论是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(,);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.
(1)求抛物线的解析式;
(2)当PQ的长度为最大值时,求点Q的坐标;
(3)点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com