【题目】如图,已知二次函数,它与轴交于、,且、位于原点两侧,与的正半轴交于,顶点在轴右侧的直线:上,则下列说法:① ② ③ ④其中正确的结论有( )
A.①②B.②③C.②③④D.①②③④
【答案】C
【解析】
先由抛物线解析式得到a=-1<0,利用抛物线的对称轴得到b>0,易得c>0,于是可对①进行判断;由顶点D在y轴右侧的直线l:y=4上可得b的范围,从而可判断②是否正确;由a=-1及顶点D在y轴右侧的直线l:y=4上,可得抛物线与x轴两交点之间的距离AB为定值,即可求得AB的长度及S△ABD的大小.
解: ∵A,B两点位于y轴两侧,且对称轴在y轴的右侧,
∴,
∵,
则b>0,
函数图像交y轴于C点,则c>0,
∴bc>0,即①错误;
又∵顶点坐标为( ),即()
∴=4,即
又∵ =,即
∴AB=4即③正确;
又∵A,B两点位于y轴两侧,且对称轴在y轴的右侧
∴<2,即b<4
∴0<b<4,故②正确;
∵顶点的纵坐标为4,即△ABD的高为4
∴△ABD的面积= ,故④正确;
故答案为:C.
科目:初中数学 来源: 题型:
【题目】已知矩形中,,动点从点出发,以2cm/s的速度沿向终点匀速运动,连接,以为直径作⊙分别交于点,连接.设运动时间为s .
(1)如图①,若点为的中点,求证:;
(2)如图②,若⊙与相切于点,求的值;
(3)若是以为腰的等腰三角形,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=mx(m为常数)与双曲线y=(k为常数)相交于A、B两点.
(1)若点A的横坐标为3,点B的纵坐标为﹣4.直接写出:k= ,m= ,mx>的解集为 .
(2)若双曲线y=(k为常数)的图象上有点C(x1,y1),D(x2,y2),当x1<x2时,比较y1与y2的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在某场足球比赛中,球员甲从球门底部中心点的正前方处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为时达到最高点,此时足球飞行的水平距离为.已知球门的横梁高为.
在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)
守门员乙站在距离球门处,他跳起时手的最大摸高为,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一位篮球运动员在距离篮圈中心水平距离处跳起投篮,球沿一条抛物线运动,当球运动的水平距离为时,达到最大高度,然后准确落入篮筐内,已知篮圈中心距离地面高度为,试解答下列问题:
(1)建立图中所示的平面直角坐标系,求抛物线所对应的函数表达式.
(2)这次跳投时,球出手处离地面多高?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,E,F分别在线段BC和CD上,.连接EF。将△ADF绕着点顺时针旋转90°,得到
(1)证明:
(2)证明:EF=BE+DF.
(3)已知正方形ABCD边长是6,EF=5,求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:
尺规作图:过圆外一点作圆的切线.
已知:P为⊙O外一点.
求作:经过点P的⊙O的切线.
小敏的作法如下:
如图,
(1)连接OP,作线段OP的垂直平分线MN交OP于点C;
(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;
(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.
老师认为小敏的作法正确.
请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是_____;由此可证明直线PA,PB都是⊙O的切线,其依据是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人进行羽毛球比赛,把球看成点,其飞行的路线为抛物线的一部分.如图建立平面直角坐标系,甲在O点正上方1m的P处发球,羽毛球飞行的高度y(m)与羽毛球距离甲站立位置(点O)的水平距离x(m)之间满足函败表达式y=a(x﹣4)2+h.已知点O与球网的水平距离为5m,球网的高度为1.55m,球场边界距点O的水平距离为10m.
(1)当a=﹣时,求h的值,并通过计算判断此球能否过网.
(2)若甲发球过网后,乙在另一侧距球网水平距离lm处起跳扣球没有成功,球在距球网水平距离lm,离地面高度2.2m处飞过,通过计算判断此球会不会出界?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴交于点、(点在点的左侧),与轴交于点.
(1)求点,点的坐标;
(2)我们规定:对于直线,直线,若,则直线;反过来也成立.请根据这个规定解决下列问题:
①直线与直线是否垂直?并说明理由;
②若点是抛物线的对称轴上一动点,是否存在点与点,点构成以为直角边的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com