【题目】如图,四边形ABCD是正方形,E,F分别在线段BC和CD上,.连接EF。将△ADF绕着点顺时针旋转90°,得到
(1)证明:
(2)证明:EF=BE+DF.
(3)已知正方形ABCD边长是6,EF=5,求线段BE的长.
【答案】(1)见解析;(2)见解析(3)2或3
【解析】
(1)由旋转的性质得到,,,然后得到,利用SAS证明三角形全等即可;
(2)由(1)知DF=BF’,即可得到EF=BE+DF;
(3)设BE=x,则DF=5-x,得到CF=x+1,利用勾股定理得,即可求出BE的长度.
解:(1)由旋转的性质可得,,。
∵,
∴
∴
∵,,
∴;
(2)∵,
∴,
又∵,
∴EF=BE+DF;
(3)∵BE=x,EF=BE+DF ,EF=5,
∴DF=5-x,
又∵正方形ABCD边长是6,即BC=CD=6,
∴CE=BC-BE=6-x,CF=CD-DF=6-(5-x)=x+1,
在Rt△CEF中,有,
即,
解得:;
∴线段BE的长为2或3.
科目:初中数学 来源: 题型:
【题目】如图,在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C、D.
(1)求证AC=BD;
(2)若AC=3,大圆和小圆的半径分别为6和4,则CD的长度是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?请完成下列问题:
(1)未降价之前,某商场衬衫的总盈利为 元.
(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利 元,平均每天可售出 件(用含x的代数式进行表示)
(3)请列出方程,求出x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的与的部分对应值如表:
0 | 2 | 3 | 4 | ||
5 | 0 | 0 |
下列结论:①抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④3是方程的一个根;⑤若,是抛物线上两点,则,其中正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数,它与轴交于、,且、位于原点两侧,与的正半轴交于,顶点在轴右侧的直线:上,则下列说法:① ② ③ ④其中正确的结论有( )
A.①②B.②③C.②③④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点C(O,4),与轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴与抛物线交于点D,与直线BC交于点E.
(1)求抛物线的解析式;
(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;
(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦EF⊥AB于点C,过点F作⊙O的切线交AB的延长线于点D.
(1)已知∠A=α,求∠D的大小(用含α的式子表示);
(2)取BE的中点M,连接MF,请补全图形;若∠A=30°,MF=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.
(2)求取出的两张卡片上的数字之和为偶数的概率P.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片,是的中点,是上一动点,沿折叠,点落在点处;延长交于点,连接.
(1)求证:≌;
(2)当时,将沿折叠,点落在线段上点处.
①求证:∽;
②如果,,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com