【题目】已知二次函数的与的部分对应值如表:
0 | 2 | 3 | 4 | ||
5 | 0 | 0 |
下列结论:①抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④3是方程的一个根;⑤若,是抛物线上两点,则,其中正确的个数是( )
A.1B.2C.3D.4
【答案】B
【解析】
先利用交点式求出抛物线解析式,则可对①进行判断;利用抛物线的对称性可对②进行判断;利用抛物线与x轴的交点坐标为(0,0),(4,0)可对③④进行判断;根据二次函数的增减性可对⑤进行判断.
解:设抛物线解析式为y=ax(x-4),
把(-1,5)代入得5=a×(-1)×(-1-4),解得a=1,
∴抛物线解析式为y=x2-4x,所以①正确;
抛物线的对称轴为直线x=2,所以②正确;
∵抛物线与x轴的交点坐标为(0,0),(4,0),
∴当0<x<4时,y<0,所以③错误;
∵抛物线与x轴的交点坐标为(0,0),(4,0),
∴3不是方程的一个根④错误;
若A(x1,2),B(x2,3)是抛物线上两点,则x2<x1<2或2<x1<x2,所以⑤错误,
则选B.
科目:初中数学 来源: 题型:
【题目】如图,等腰△ABC中,AB=AC=5cm,BC=8cm.动点D从点C出发,沿线段CB以2cm/s的速度向点B运动,同时动点O从点B出发,沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随时停止.设运动时间为t(s),以点O为圆心,OB长为半径的⊙O与BA交于另一点E,连接ED.当直线DE与⊙O相切时,t的取值是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式d=计算.
例如:求点P(﹣2,1)到直线y=x+1的距离.
解:因为直线y=x+1可变形为x﹣y+1=0,其中k=1,b=1.
所以点P(﹣2,1)到直线y=x+1的距离为d====.
根据以上材料,求:
(1)点P(2,4)到直线y=3x﹣2的距离,并说明点P与直线的位置关系;
(2)点P(2,1)到直线y=2x﹣1的距离;
(3)已知直线y=﹣3x+1与y=﹣3x+3平行,求这两条直线的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,是矩形的边上的一点,AC是其对角线,连接AE,过点E作交于点, 交DC于点F,过点B作于点G,交AE于点H.
(1)求证:∽;
(2)求证:;
(3)若E是BC的中点,,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在某场足球比赛中,球员甲从球门底部中心点的正前方处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为时达到最高点,此时足球飞行的水平距离为.已知球门的横梁高为.
在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)
守门员乙站在距离球门处,他跳起时手的最大摸高为,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量(千克)与销售单价(元)符合一次函数关系,如图所示.
(1)求与之间的函数关系式,并写出自变量的取值范围;
(2)若在销售过程中每天还要支付其他费用500元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,E,F分别在线段BC和CD上,.连接EF。将△ADF绕着点顺时针旋转90°,得到
(1)证明:
(2)证明:EF=BE+DF.
(3)已知正方形ABCD边长是6,EF=5,求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图C是线段BD上一点,分别以BC、CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的三角形对数有( )
A.1对B.2对C.3对D.4对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次中奖机会.为了活跃气氛.设计了两个抽奖方案:
方案一:转动转盘一次,转出红色可领取一份奖品;
方案二:转动转盘两次,两次都转出红色可领取一份奖品.(两个转盘都被平均分成3份)
(1)若转动一次转盘,求领取一份奖品的概率;
(2)如果你获得一次抽奖机会,你会选择哪个方案?请采用列表法或树状图说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com