精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数的部分对应值如表:

0

2

3

4

5

0

0

下列结论:①抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④3是方程的一个根;⑤若是抛物线上两点,则,其中正确的个数是(

A.1B.2C.3D.4

【答案】B

【解析】

先利用交点式求出抛物线解析式,则可对①进行判断;利用抛物线的对称性可对②进行判断;利用抛物线与x轴的交点坐标为(00),(40)可对③④进行判断;根据二次函数的增减性可对⑤进行判断.

解:设抛物线解析式为y=axx-4),

把(-15)代入得5=a×-1×-1-4),解得a=1

∴抛物线解析式为y=x2-4x,所以①正确;

抛物线的对称轴为直线x=2,所以②正确;

∵抛物线与x轴的交点坐标为(00),(40),

∴当0x4时,y0,所以③错误;

∵抛物线与x轴的交点坐标为(00),(40),

3不是方程的一个根④错误;

Ax12),Bx23)是抛物线上两点,则x2x122x1x2,所以⑤错误,

则选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等腰ABC中,ABAC5cmBC8cm.动点D从点C出发,沿线段CB2cm/s的速度向点B运动,同时动点O从点B出发,沿线段BA1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随时停止.设运动时间为ts),以点O为圆心,OB长为半径的⊙OBA交于另一点E,连接ED.当直线DE与⊙O相切时,t的取值是(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点Px0y0)和直线ykx+b,则点P到直线ykx+b的距离d可用公式d计算.

例如:求点P(﹣21)到直线yx+1的距离.

解:因为直线yx+1可变形为xy+10,其中k1b1

所以点P(﹣21)到直线yx+1的距离为d

根据以上材料,求:

1)点P24)到直线y3x2的距离,并说明点P与直线的位置关系;

2)点P21)到直线y2x1的距离;

3)已知直线y=﹣3x+1y=﹣3x+3平行,求这两条直线的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,是矩形的边上的一点,AC是其对角线,连接AE,过点E于点, DC于点F,过点B于点GAE于点H

1)求证:

2)求证:

3)若EBC的中点,,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在某场足球比赛中,球员甲从球门底部中心点的正前方处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为时达到最高点,此时足球飞行的水平距离为.已知球门的横梁高

在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)

守门员乙站在距离球门处,他跳起时手的最大摸高为,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量(千克)与销售单价(元)符合一次函数关系,如图所示.

1)求之间的函数关系式,并写出自变量的取值范围;

2)若在销售过程中每天还要支付其他费用500元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,EF分别在线段BCCD上,.连接EF。将△ADF绕着点顺时针旋转90°,得到

1)证明:

2)证明:EF=BE+DF.

3)已知正方形ABCD边长是6EF=5,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图C是线段BD上一点,分别以BCCD为边在BD同侧作等边ABC和等边CDE,ADCEFBEACG,则图中可通过旋转而相互得到的三角形对数有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次中奖机会.为了活跃气氛.设计了两个抽奖方案:

方案一:转动转盘一次,转出红色可领取一份奖品;

方案二:转动转盘两次,两次都转出红色可领取一份奖品.(两个转盘都被平均分成3份)

1)若转动一次转盘,求领取一份奖品的概率;

2)如果你获得一次抽奖机会,你会选择哪个方案?请采用列表法或树状图说明理由.

查看答案和解析>>

同步练习册答案