【题目】如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.
(1)求证:△CEB≌△ADC;
(2)若AD=9cm,DE=6cm,求BE及EF的长.
【答案】(1)见解析;(2)BE=3 cm,EF=cm.
【解析】
(1)由同角的余角相等可得∠BCE=∠CAD,而BC=AC,∠E=∠CDA=90°,故有△CEB≌△ADC;(2)由(1)知BE=DC,CE=AD,有CE=AD=9,DC=CE-DE=3,BE=DC=3,可证得△BFE∽△AFD,有故可求得EF的值.
(1)证明:∵BE⊥CE于E,AD⊥CE于D,∠ACB=90°,
∴∠E=∠ADC=90°,∠BCE=90°-∠ACD,∠CAD=90°-∠ACD,
∴∠BCE=∠CAD
在△BCE与△CAD中,
∠E=∠ADC,∠BCE=∠CAD,BC=AC
∴△CEB≌△ADC(AAS)
(2)∵△CEB≌△ADC,
∴BE=DC,CE=AD,
又∵AD=9
∴CE=AD=9,DC=CE-DE=9-6=3,
∴BE=DC=3(cm),
∵∠E=∠ADF=90°,∠BFE=∠AFD,
∴△BFE∽△AFD,
∴,即有解得:EF=(cm).
∴BE=3cm,EF=cm.
科目:初中数学 来源: 题型:
【题目】如图,Rt△AOB的顶点O在坐标原点,点B在x轴上,∠ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D,点C的坐标为(,1),
(1)求反比例函数的表达式;
(2)连接CD,求四边形OCDB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作∠FAE=45°交射线BC于点E、交边DCN于点N,联结EF.
(1)当CM:CB=1:4时,求CF的长.
(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域.
(3)当△ABM∽△EFN时,求CM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】兴隆湖是成都天府新区著名的生态绿地工程.在一次户外综合实践活动中,小明同学所在的兴趣小组用无人机航拍测量云图广场A与南山码头B的直线距离.由于无人机控制距离有限,为了安全,不能直接测量,他们采用如下方法:如图,小明在云图广场A的正上方点C处测得南山码头B的俯角α=17.09°;接着无人机往南山码头B方向水平飞行0.9千米到达点D处,测得此时南山码头B的俯角β=45°.已知AC⊥AB,CD∥AB,请根据测量数据计算A,B两地的距离.(结果精确到0.1km,参考数据:sinα≈0.29,tanα≈0.31,sinβ≈0.71)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为迎接暑假旅游高峰的到来,某旅游纪念品商店决定购进A、B两种纪念品.若购进A种纪念品7件,B种纪念品4件,需要760元;若购进A种纪念品5件.B种纪念品8件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件.考虑市场需求和资金周转,这100件纪念品的资金不少于7000元,但不超过7200元,那么该商店共有几种进货方案?
(3)若销售A种纪念品每件可获利润30元,B种纪念品每件可获利润20元,用(2)中的进货方案,哪一种方案可获利最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件.
(1)若商场平均每天要盈利1600元,每件衬衫应降价多少元?
(2)若该商场要每天盈利最大,每件衬衫应降价多少元?盈利最大是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com