精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,轴交于点,点在反比例函数的图象上,且轴平分,求_____

【答案】

【解析】

要求k的值,通常可求A的坐标,可作x轴的垂线,构造相似三角形,利用CD=4ADC0-4)可以求出A的纵坐标,再利用三角形相似,设未知数,由相似三角形对应边成比例,列出方程,求出待定未知数,从而确定点A的坐标,进而确定k的值.

解:过AAEx轴,垂足为E

C0-4),

OC=4

∵∠AED=COD=90°,∠ADE=CDO

∴△ADE∽△CDO

,

AE=1

又∵y轴平分∠ACBCOBD

BO=OD

∵∠ABC=90°

∴∠OCD=DAE=ABE=BCE

∵∠DOC=ADE=90°

∴△ABE~△COD

DE=n,则BO=OD=4nBE=9n

,

OE=5n=,

故点A(1),

k=×1=

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图△ABC内接于⊙OOHACH,过A点的切线与OC的延长线交于点D,∠B=30°OH=5.请求出:

1)∠AOC的度数;

2)△OAC的面积;

3)线段AD的长(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.

I)计算的值等于____________

(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边、面积等于的矩形,并简要说明画图方法(不要求证明)_____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形的直角顶点在坐标原点,OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为(  )

A. y=﹣ B. y=﹣ C. y=﹣ D. y=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中一次函数y=ax+ba0)的图象与反比例函数k0)的图象交于AB两点x轴交于点C,过点AAHx轴于点H,O是线段CH的中点,AC=,cosACH=B的坐标为(4,n

1)求该反比例函数和一次函数的解析式

2)求BCH的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超市有两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买型瓶3个或以上,一次性返还现金5元,设购买型瓶(个),所需总费用为(元),则下列说法不一定成立的是(

型号

A

B

单个盒子容量(升)

2

3

单价(元)

5

6

A.购买型瓶的个数是为正整数时的值B.购买型瓶最多为6

C.之间的函数关系式为D.小张买瓶子的最少费用是28

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在菱形中,.动点从点出发,沿边以每秒1个单位长度的速度运动到点时停止,连接,点与点关于直线对称,连接,设运动时间为(秒).

1)菱形对角线的长为

2)当点恰在上时,求t的值;

3)当时,求的周长;

4)直接写出在整个运动过程中,点运动的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具店销售甲、乙两种圆规,当销售5只甲种、1只乙种圆规,可获利润25元,销售6只甲种、3只乙种圆规,可获利润39元.

1问该文具店销售甲、乙两种圆规,每只的利润分别是多少元?

21中,文具店共销售甲、乙两种圆规50只,其中甲种圆规为a只,求文具店所获得利润Pa的函数关系式,并求当a≥30P的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点是线段上一点,,以点为圆心,的长为半径作⊙,过点的垂线交⊙两点,点在线段的延长线上,连接交⊙于点,以为边作

1)求证:是⊙的切线;

2)若,求四边形与⊙重叠部分的面积;

3)若,连接,求的长.

查看答案和解析>>

同步练习册答案