精英家教网 > 初中数学 > 题目详情

【题目】如图,已知∠BOC2AOCOD平分∠AOB,∠BOE90°,若∠AOC40°,则∠DOE的度数等于(  )

A.20°B.25°C.30°D.30°

【答案】C

【解析】

由∠BOC=2AOC可得∠AOB=3AOC=120°,由OD平分∠AOB可得∠AOD=AOB=60°,由∠BOE=90°可得∠AOE=AOB-BOE=30°,所以∠DOE=AOD-AOE=30°

解:∵∠BOC2∠AOCAOC40°

∴∠AOBBOC+∠AOC =3∠AOC120°

BOE90°

∴∠AOE=∠AOB-BOE=30°

OD平分AOB

∴∠AOD60°

∴∠DOEAODAOE30°

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,C为线段BD上一动点,分别过点BDABBDEDBD,连接ACEC. 已知AB=2DE=1BD=8,设CD=x.

(1)用含x的代数式表示AC+CE的长;

(2)AC+CE的值最小;

(3)根据(2)中的规律和结论,请构图求出代数式的最小值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据给出的数轴及已知条件,解答下面的问题:

1)已知点ABC表示的数分别为1-3.观察数轴,与点A的距离为3的点表示的数是 AB两点之间的距离为

2)数轴上,点B关于点A的对称点表示的数是

3)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是 ;若此数轴上MN两点之间的距离为2019MN的左侧),且当A点与C点重合时,M点与N点也恰好重合,则点M表示的数是 ,点N表示的数是

4)若数轴上PQ两点间的距离为aPQ的左侧),表示数b的点到PQ的两点的距离相等,将数轴折叠,当P点与Q点重合时,点P表示的数是 ,点Q表示的数是 (用含ab的式子表示这两个数)。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且ABCD,OB=6cm,OC=8cm.求:

(1)BOC的度数;

(2)BE+CG的长;

(3)O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AEBC,AFCD,垂足分别为E,F,且BE=DF.

(1)求证:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ACBD,连结AB,直线ACBD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PAPB,构成∠PAC、∠APB、∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°)

(1)当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;

(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?若不成立,试写出∠PAC、∠APB、∠PBD三个角的等量关系(无需说明理由)

(3)当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,写出你发现的一个结论并加以说明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图(1),点EF分别在正方形ABCD的边BCCD上,∠EAF45°,试判断BEEFFD之间的数量关系.

(发现证明)小聪把ABE绕点A逆时针旋转90°ADG,从而发现EFBE+FD,请你利用图(1)证明上述结论.

(类比引申)如图(2),四边形ABCD中,∠BAD≠90°ABAD,∠B+D180°,点EF分别在边BCCD上,则当∠EAF与∠BAD满足   关系时,仍有EFBE+FD

(探究应用)如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知ABAD80米,∠B60°,∠ADC120°,∠BAD150°,道路BCCD上分别有景点EF,∠EAF75°AEADDF401)米,现要在EF之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上,点表示,点表示,点表示.动点从点出发,沿数轴正方向以每秒个单位的速度匀速运动;同时,动点从点出发,沿数轴负方向以每秒个单位的速度匀速运动.设运动时间为.

(1)为何值时,两点相遇?相遇点所对应的数是多少?

(2)在点出发后到达点之前,求为何值时,点到点的距离与点到点的距离相等;

(3)在点向右运动的过程中,的中点,在点到达点之前,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】□ABCD,过点DDE⊥AB于点E,点F在边CD上,DFBE,连接AFBF.

1)求证:四边形BFDE是矩形;

2)若CF3BF4DF5,求证:AF平分∠DAB.

查看答案和解析>>

同步练习册答案