分析 (1)由BD是△ABC的角平分线,DE∥AB,易证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;
(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得DG的产,继而求得DE的长,则可求得答案.
解答 (1)证明:∵BD是△ABC的角平分线,
∴∠ABD=∠DBE,
∵DE∥AB,
∴∠ABD=∠BDE,
∴∠DBE=∠BDE,
∴BE=DE;
∵BE=AF,
∴AF=DE;
∴四边形ADEF是平行四边形;
(2)解:过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,![]()
∵∠ABC=60°,BD是∠ABC的平分线,
∴∠ABD=∠EBD=30°,
∴DG=$\frac{1}{2}$BD=$\frac{1}{2}$×4=2,
∵BE=DE,
∴BH=DH=2,
∴BE=$\frac{BH}{cos30°}$=$\frac{4}{3}\sqrt{3}$,
∴DE=$\frac{4}{3}\sqrt{3}$,
∴四边形ADEF的面积为:DE•DG=$\frac{8}{3}\sqrt{3}$.
点评 此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法.
科目:初中数学 来源: 题型:选择题
| A. | (-x-y)(x-y) | B. | (x+y)(x-y) | C. | (x+y)(-x-y) | D. | (-x-y)(-x+y) |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com