【题目】如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G过C作CE∥BD交AB的延长线于点E.
(1)求证:CE是⊙O的切线;
(2)求证:CG=BG;
(3)若∠DBA=30°,CG=8,求BE的长.
【答案】(1)见解析;(2)见解析;(3)BE=8
【解析】
(1)连接OC,先证得,根据垂径定理得到OC⊥BD,根据CE∥BD推出OC⊥CE,即可得到结论;
(2)根据圆周角定理得出∠ACB=90°,然后根据同角的余角相等得出∠A=∠BCF,即可证得∠BCF=∠CBD,根据等角对等边即可证得结论;
(3)连接AD,根据圆周角定理得出∠ADB=90°,即可求得∠BAD=60°,根据圆周角定理得出∠DAC=∠BAC=30°,然后根据三角形相似和等腰三角形的判定即可求得BE的值.
(1)证明:连接OC,
∵∠A=∠CBD,
∴,
∴OC⊥BD,
∵CE∥BD,
∴OC⊥CE,
∴CE是⊙O的切线;
(2)证明:∵AB为直径,
∴∠ACB=90°,
∵CF⊥AB,
∴∠ACB=∠CFB=90°,
∵∠ABC=∠CBF,
∴∠A=∠BCF,
∵∠A=∠CBD,
∴∠BCF=∠CBD,
∴CG=BG;
(3)解:连接AD,
∵AB为直径,
∴∠ADB=90°,
∵∠DBA=30°,
∴∠BAD=60°,
∵,
∴∠DAC=∠BAC=∠BAD=30°,
∴,
∵CE∥BD,
∴∠E=∠DBA=30°,
∴AC=CE,
∴,
∵∠A=∠BCF=∠CBD=∠E=30°,
∴∠BCE=30°,
∴BE=BC,
∴△CGB∽△CBE,
∴,
∵CG=8,
∴BC=8,
∴BE=8.
科目:初中数学 来源: 题型:
【题目】已知抛物线(为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设是(1)所确定的抛物线上位于轴下方、且在对称轴左侧的一个动点,过作轴的平行线,交抛物线于另一点,再作轴于,轴于.
①当时,求矩形的周长;
②试问矩形的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时点的坐标.如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCD是菱形,点A(0,4),B(﹣3,0)反比例函数y=(k为常数,k≠0,x>0)的图象经过点D.
(1)填空:k=_____.
(2)已知在y=的图象上有一点N,y轴上有一点M,且四边形ABMN是平行四边形,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在河对岸有一棵大树 A,在河岸 B 点测得 A 在北偏东 60°方向上,向东前进 200m 到达 C 点,测得 A 在北偏东 30°方向上,求河的宽度(精确到 0.1m).参考数据 ≈1.414,≈1.732.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a>0)的图象经过点A(1,2).
(1)当b=1,c=﹣4时,求该二次函数的表达式;
(2)已知点M(t﹣1,5),N(t+1,5)在该二次函数的图象上,请直接写出t的取值范围;
(3)当a=1时,若该二次函数的图象与直线y=3x﹣1交于点P,Q,将此抛物线在直线PQ下方的部分图象记为C,
①试判断此抛物线的顶点是否一定在图象C上?若是,请证明;若不是,请举反例;
②已知点P关于抛物线对称轴的对称点为P′,若P′在图象C上,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面高为8米的点、处要安装两盏警示灯,则这两盏灯的水平距离是____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为( )
A. 4 B. 2 C. 7 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是反比例函数y=的图象,当-4≤x≤-1时,-4≤y≤-1.
(1)求该反比例函数的表达式;
(2)若点M,N分别在该反比例函数的两支图象上,请指出什么情况下线段MN最短(不需要证明),并注出线段MN长度的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知边长为2的正方形ABCD,边BC上有一点E,将△DCE沿DE折叠至△DFE,若DF,DE恰好与以正方形ABCD的中心为圆心的⊙O相切,则⊙O的半径为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com