【题目】如图,△ABC中,AC=BC,∠BAC的外角平分线交BC的延长线于点D,若∠ADC=∠CAD,则∠ABC= 度.
科目:初中数学 来源: 题型:
【题目】如图1,AB=AC,EF=EG,△ABC≌△EFG,AD⊥BC于点D,EH⊥FG于点H
(1) 直接写出AD、EH的数量关系:___________________
(2) 将△EFG沿EH剪开,让点E和点C重合
① 按图2放置△EHG,将线段CD沿EH平移至HN,连接AN、GN,求证:AN⊥GN
② 按图3放置△EHG,B、C(E)、H三点共线,连接AG交EH于点M.若BD=1,AD=3,求CM的长度
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=AD,BC=DC,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,若△FCD的面积为2,则四边形ABCD的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教材原题解答:
已知是含字母的单项式,要使多项式是某个多项式的平方,求.
解:根据完全平方公式,分两种情况:
当为含字母的一次单项式时,
.
当为含字母的四次单项式时,
则
为或或
问题发现:
由上面问题解答过程,我们可以得到下列等式:
.
观察等式的左边多项式的系数发现:.
爱学习的小明又进行了很多运算:等等,
发现同样有.
于是小明猜测:若多项式(是常数,)是某个含的多项式的平方,则系数一定存在某种关系
问题解决:
(1)请用代数式表示之间的关系;
(2)若多项式加上一个含字母y的单项式,就能变形为一个含的多项式的平方,请直接写出所有满足条件的单项式,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为(m2),种草所需费用1(元)与(m2)的函数关系式为,其图象如图所示:栽花所需费用2(元)与x(m2)的函数关系式为2=﹣0.012﹣20+30000(0≤≤1000).
(1)请直接写出k1、k2和b的值;
(2)设这块1000m2空地的绿化总费用为W(元),请利用W与的函数关系式,求出绿化总费用W的最大值;
(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.
(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;
(2)求使﹣2的值为整数的实数k的整数值;
(3)若k=﹣2,λ=,试求λ的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为x km,通过铁路运输和通过公路运输需交总运费y1元和y2元,
(1)求y1和y2关于x的表达式.
(2)若A地到B地的路程为120km,哪种运输可以节省总运费?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com