如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?
![]()
【考点】勾股定理;勾股定理的逆定理.
【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.
【解答】解:连结AC,如图所示:
在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,
由勾股定理得:AC=
=10(米),
∵AC2+BC2=102+242=676,AB2=262=676,
∴AC2+BC2=AB2,
∴∠ACB=90°,
∴该区域面积S=S△ACB﹣S△ADC=
×10×24﹣
×6×8=96(平方米),
∴铺满这块空地共需花费=96×100=9600元.
![]()
【点评】本题考查了勾股定理,三角形面积,勾股定理的逆定理的应用;解此题的关键是求出区域的面积.
科目:初中数学 来源: 题型:
下列关于两个三角形全等的说法:
①三个角对应相等的两个三角形全等;
②三条边对应相等的两个三角形全等;
③有两角和其中一个角的对边对应相等的两个三角形全等;
④有两边和一个角对应相等的两个三角形全等.
正确的说法个数是( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为__________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
在下列各组条件中,不能说明△ABC≌△DEF的是( )
A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠D
C.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=
EF,AC=DF
查看答案和解析>>
科目:初中数学 来源: 题型:
.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.
(1)如图1,当点P与点Q重合时,AE与BF的位置关系是__________,QE与QF的数量关系式__________;
(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;
(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在Rt△ABC中,∠A=90°,AB=AC=4cm,若O是BC的中点,动点M在AB移动,动点N在AC上移动,且AN=BM.
(1)证明:OM=ON;
(2)四边形AMON面积是否发生变化,若发生变化说明理由;若不变,请你求出四边形AMON的面积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com