【题目】如图,是小明同学在课堂上画的一个图形,AB∥CD,他要想得出∠1=∠2,那么还需要添加一个什么样的条件?
【答案】可添加AE、CF分别平分∠BAC和∠ACD或∠E=∠F或AE∥CF(任选其一即可)
【解析】
若添加AE、CF分别平分∠BAC和∠ACD,根据角平分线的定义和平行线的性质即可证出结论;若添加∠E=∠F,根据平行线的性质及判定即可证出结论;若添加AE∥CF,根据平行线的性质及判定即可证出结论.
解:若添加AE、CF分别平分∠BAC和∠ACD
∴∠1=∠BAC,∠2=∠ACD
∵AB∥CD
∴∠BAC=∠ACD
∴∠1=∠2;
若添加∠E=∠F
∴AE∥CF
∴∠EAC=∠FCA
∵AB∥CD
∴∠BAC=∠ACD
∴∠BAC-∠EAC =∠ACD-∠FCA
∴∠1=∠2
若添加AE∥CF
∴∠EAC=∠FCA
∵AB∥CD
∴∠BAC=∠ACD
∴∠BAC-∠EAC =∠ACD-∠FCA
∴∠1=∠2
综上:可添加AE、CF分别平分∠BAC和∠ACD或∠E=∠F或AE∥CF(任选其一即可).
科目:初中数学 来源: 题型:
【题目】如图,抛物线 与 轴交于 、 两点(点 在点 的左侧),点 的坐标为 ,与 轴交于点 ,作直线 .动点 在 轴上运动,过点 作 轴,交抛物线于点 ,交直线 于点 ,设点 的横坐标为 .
(Ⅰ)求抛物线的解析式和直线 的解析式;
(Ⅱ)当点 在线段 上运动时,求线段 的最大值;
(Ⅲ)当以 、 、 、 为顶点的四边形是平行四边形时,直接写出 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.如果∠BAC=30°,∠DAE=105°,则y与x之间的函数关系式为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2.求证:∠3=∠ACB.
下面给出了部分证明过程和理由,请补全所有内容.
证明:∵CD⊥AB,FE⊥AB
∴∠BDC=∠BEF=90°( )
∴EF∥DC( )
∴∠2= ( )
又∵∠2=∠1(已知)
∴∠1= (等量代换)
∴DG∥BC( )
∴∠3=∠ACB(两直线平行,同位角相等)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.
(1)求△ABC的面积;
(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;
(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2= (x>0)交于点C,过点C作CD⊥x轴,且OA=AD,则以下结论: ①当x>0时,y1随x的增大而增大,y2随x的增大而减小;
②k=4;
③当0<x<2时,y1<y2;
④如图,当x=4时,EF=4.
其中正确结论的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副三角板直角顶点重合于点,,,.
(1)如图(1),若,求证:;
(2)如图(2),若,,则 度;
(3)如图(3),在(1)的条件下,与相交于点,连接,,若,,,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y= x+ 与x轴,y轴分别相交于点D,点E,连接AC并延长与y轴相交于点B,点B的坐标为(0, ).
(1)求证:OE=CE;
(2)请判断直线CD与⊙P位置关系,证明你的结论,并求出⊙P半径的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com