【题目】某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元,已知两种型号汽车销售价格始终不变.
(1)求A、B两种车型的销售单价分别是多少?
(2)第三周计划售出A、B两种型号的车共5辆,若销售总额不少于100万元,则B型车至少要售出多少辆?
【答案】(1)每辆A型车售价为18万元,B型车的售价为26万元;(2)B型车至少售出2辆
【解析】
(1)设每辆A型车售价为x万元,B型车的售价为y万元,根据“上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元”可列出关于x、y的二元一次方程组求解即可;
(2)设第三周计划售出B型车m辆,则A型车售出辆,再根据“若销售总额不少于100万元”列出不等式求解即可.
解:(1)设每辆A型车售价为x万元,B型车的售价为y万元,
根据题意,得,
解得:,
答:每辆A型车售价为18万元,B型车的售价为26万元.
(2)设第三周计划售出B型车m辆,则A型车售出辆,
根据题意,得:
解得:
答:B型车至少售出2辆.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AB=10,tanA=.点P是斜边AB上一个动点,过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q.设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;
(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
(3)求两人相遇的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,AC是⊙O的切线,∠ABC=52°,BC交⊙O于点D,E是AB上一点,延长DE交⊙O于点F.
(Ⅰ)如图①,连接BF,求∠C和∠DFB的大小;
(Ⅱ)如图②,当DB=DE时,求∠OFD的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与x轴交于A、B两点,与y轴交于C点,连接、,已知点A、C的坐标为、.
(1)求抛物线的表达式;
(2)点P是线段下方抛物线上的一动点,如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形为平行四边形,求点Q的坐标;
(3)如图2,若点M是内一动点,且满足,过点M作,垂足为N,设的内心为I,试求的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在矩形ABCD中,AB=6,BC=9,点E是BC边上一动点,连接AE、DE ,作△ECD的外接⊙O,交AD于点F,交AE于点G,连接FG.
(1)求证△AFG∽△AED;
(2)当BE的长为 时,△AFG为等腰三角形;
(3)如图②,若BE=1,求证:AB与⊙O相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B是反比例函数(k≠0)图象上的两点,延长线段AB交y轴于点C,且B为线段AC的中点,过点A作AD⊥x轴于点D,E为线段OD的三等分点,且OE<DE.连接AE,BE.若S△ABE=7,则k的值为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,第二次由持球者将球再随机传给其他三人中的某一人.
(1)第一次传球后球到乙手里的概率为 ;
(2)画树状图或列表求第二次传球后球回到甲手里的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com