【题目】如图,在平面直角坐标系中,点 、 、 的坐标分别为 、 、 ,先将 沿一确定方向平移得到 ,点 的对应点 的坐标是 ,再将 绕原点 顺时针旋转 得到 ,点 的对应点为点 .
(1)画出 和 ;
(2)求出在这两次变换过程中,点 经过点 到达 的路径总长;
(3)求线段 旋转到 所扫过的图形的面积.
科目:初中数学 来源: 题型:
【题目】如图,点M在线段BC上,点E和N在线段AC上,EM∥AB,BE和MN分别平分∠ABC和∠EMC.下列结论:①∠MBN=∠MNB;②∠MBE=∠MEB;③MN∥BE.其中正确的是( )
A.①②③B.②③C.①③D.①②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,c)(见图1),且 .
(1)求a、b、c的值;
(2)①在x轴的正半轴上存在一点M,使三角形COM的面积是三角形ABC的面积的一半,求出点M的坐标;
②在坐标轴的其它位置是否存在点M,使三角形COM的面积三角形ABC的面积的一半仍然成立? 若存在,请直接写出符合条件的点M的坐标;
(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数.
(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下(单位:分):
A班:88,91,92,93,93,93,94,98,98,100
B班:89,93,93,93,95,96,96,98,98,99
通过整理,得到数据分析表如下:
班级 | 最高分 | 平均分 | 中位数 | 众数 | 方差 |
A班 | 100 | a | 93 | 93 | c |
B班 | 99 | 95 | b | 93 | 8.4 |
(1)求表中a、b、c的值;
(2)依据数据分析表,有人说:“最高分在A班,A班的成绩比B班好”,但也有人说B班的成绩要好,请给出两条支持B班成绩好的理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.
(1)请在图中画出平移后的△A′B′C′;
(2)画出平移后的△A′B′C′的中线B′D′
(3)若连接BB′,CC′,则这两条线段的关系是________
(4)△ABC在整个平移过程中线段AB 扫过的面积为________
(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有______个
(注:格点指网格线的交点)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数 的图像记为 ,其顶点为 ,二次函数 的图像记为 ,其顶点为 ,且满足点 在 上,点 在 上,则称这两个二次函数互为“伴侣二次函数”.
(1)写出二次函数 的一个“伴侣二次函数”;
(2)设二次函数 与 轴的交点为 ,求以点 为顶点的二次函数 的“伴侣二次函数”;
(3)若二次函数 与其“伴侣二次函数”的顶点不重合,试求该“伴侣二次函数”的二次项系数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】重庆八中的老师工作很忙,但初一年级很多数学老师仍然坚持锻炼身体,比如张老师就经常坚持饭后走一走.某天晚饭后他从学校慢步到附近的中央公园,在公园里休息了一会后,因学校有事,快步赶回学校.下面能反映当天张老师离学校的距离y与时间x的关系的大致图象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系 xOy 中,点A,B的坐标分别为(-2,0),(1,0).同时将点A ,B先向左平移1个单位长度,再向上平移2个单位长度,得到点A,B的对应点依次为C,D,连接CD,AC, BD .
(1)写出点C , D 的坐标;
(2)在 y 轴上是否存在点E,连接EA ,EB,使S△EAB=S四边形ABDC?若存在,求出点E的坐标;若不存在,说明理由;
(3)点 P 是线段 AC 上的一个动点,连接 BP , DP ,当点 P 在线段 AC 上移动时(不与 A , C 重合),直接写出CDP 、ABP 与BPD 之间的等量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com