精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,⊙OABC的外接圆, =,点D在边BC上,AEBCAE=BD

1)求证:AD=CE

2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.

【答案】(1)见解析;(2)见解析

【解析】试题分析:(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;
(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CGAE平行且相等.

试题解析:

1)在⊙O中,

=

AB=AC

∴∠B=ACB

AEBC

∴∠EAC=ACB

∴∠B=EAC

ABDCAE中,

∴△ABD≌△CAESAS),

AD=CE

2易证ABD≌△ACGBD=CG

BD=AE

CG=AE

CGAE

∴四边形AGCE是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(14分)如图,已知在矩形ABCD中,AB=a,BC=b,点E是线段AD边上的任意一点(不含端点A、D),连结BE、CE.

(1)若a=5,AC=13,求b.

(2)若a=5,b=10,当BE⊥AC时,求出此时AE的长.

(3)设AE=x,试探索点E在线段AD上运动过程中,使得△ABE与△BCE相似时,求a、b应满足什么条件,并求出此时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下列材料:

我们可以通过以下方法求代数式的最小值

≥0

有最小值

请根据上述方法,解答下列问题:

1,则的值是______

2求证:无论x取何值,代数式的值都是正数;

3)若代数式的最小值为2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴交与点E,已知点B(﹣1,0).

(1)点A的坐标:      ,点E的坐标:      

(2)若二次函数y=﹣x2+bx+c过点A、E,求此二次函数的解析式;

(3)P是线段AC上的一个动点(P与点A、C不重合)连结PB、PD,设L是△PBD的周长,当L取最小值时

:①点P的坐标

判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O的半径为4BO外一点,连接OB,且OB=6,过点BO的切线BD,切点为D,延长BOO于点A,过点A作切线BD的垂线,垂足为C

1)求证:AD平分BAC

2)求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学举办网络安全知识答题竞赛,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.

平均分(分)

中位数(分)

众数(分)

方差(分2

初中部

a

85

b

s初中2

高中部

85

c

100

160

(1)根据图示计算出a、b、c的值;

(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?

(3)计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的顶点A、C、D都在O上,AB与O相切于点A,BC与O交于点E,设OCD=αBAD=β

(1)求证:AB=AE;

(2)试探究αβ之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°A30°,点DAB上,以BD为直径的⊙OAC于点E,连接DE并延长,交BC的延长线于点F

1)求证:BDF是等边三角形;

2)连接AFDC,若BC3,写出求四边形AFCD面积的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市正在进行商业街改造,商业街起点在古民居P的南偏西60°方向上的A处,现已改造至古民居P南偏西30°方向上的B处,A与B相距150m,且B在A的正东方向.为不破坏古民居的风貌,按照有关规定,在古民居周围100m以内不得修建现代化商业街.若工程队继续向正东方向修建200m商业街到C处,则对于从B到C的商业街改造是否违反有关规定?

查看答案和解析>>

同步练习册答案