分析 由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答 解:①由图象可知:a<0,b>0,c>0,abc<0,错误;
②∵抛物线的对称轴x=-$\frac{b}{2a}$=1,
∴b=-2a,即2a+b=0,正确;
③∵抛物线与x轴有两个交点,
∴b2-4ac>0,正确;
④当x=1时,y的值最大.此时,y=a+b+c,
而当x=m≠1时,y=am2+bm+c,
所以a+b+c>am2+bm+c,
故a+b>am2+bm,即a+b>m(am+b),正确;
⑤当x=3时函数值小于0,y=9a+3b+c<0,且x=-$\frac{b}{2a}$=1,
即a=-$\frac{b}{2}$,代入得9(-$\frac{b}{2}$)+3b+c<0,得2c<3b,错误;
故答案为:②③④.
点评 本题主要考查二次函数图象与系数的关系,掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和、抛物线与y轴的交点、抛物线与x轴交点的个数确定是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 3 cm,2 cm,2 cm | |
B. | 3 cm,1 cm,3 cm | |
C. | 3 cm,2 cm,2 cm和3 cm,1 cm,3 cm都有可能 | |
D. | 不能确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com