6£®Èçͼ£¬OÎª×ø±êÔ­µã£¬µãAÔÚxÕý°ëÖáÉÏ£¬OA=2£¬½«Ïß¶ÎOAÈÆµãOÄæÊ±ÕëÐýת150¡ãÖÁOBµÄλÖã¬Èô¾­¹ýµãA¡¢O¡¢BÈýµãµÄÅ×ÎïÏߵĽâÎöʽΪy=ax2+bx+c£®
£¨1£©Çó¾­¹ýA¡¢O¡¢BÈýµãµÄÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏ£¬ÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔµãP¡¢O¡¢BΪ¶¥µãµÄÈý½ÇÐÎÊǵÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öÂú×ãÌõ¼þµÄËùÓеãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÈôµãDÊÇÏß¶ÎOBÏ·½Å×ÎïÏßÉϵ͝µã£¬ÇóËıßÐÎABDOÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©¹ýµãB×÷BC¡ÍOC£¬´¹×ãΪC£¬ÓÉÌâÒâ¿ÉÖª¡ÏBOC=30¡ã£¬OB=2£¬ÏÈÇóµÃµãBµÄ×ø±ê£¬È»ºó½«µãA¡¢O¡¢BµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ£¬´Ó¶ø¿ÉÇóµÃa¡¢b¡¢cµÄÖµ£»
£¨2£©ÏÈÇóµÃÅ×ÎïÏߵĶԳÆÖáΪx=1£¬ÉèµãPµÄ×ø±êΪ£¨1£¬a£©£¬ÓÉÁ½µã¼äµÄ¾àÀ빫ʽÇóµÃPO¡¢PBµÄ³¤£¬È»ºó·ÖΪPO=PB£¬OB=BP£¬BP=BOÈýÖÖÇé¿öÁз½³ÌÇó½â¼´¿É£»
£¨3£©¹ýµãD×÷xÖáµÄ´¹Ïߣ¬½»OBÓÚµãC£®ÏÈÇóµÃÖ±ÏßOBµÄ½âÎöʽΪy=$-\frac{\sqrt{3}}{3}$x£®ÉèµãDµÄ×ø±êΪ£¨a£¬$\frac{2\sqrt{3}-3}{3}$a2+$\frac{6-4\sqrt{3}}{3}$a£©£¬ÔòµãCµÄ×ø±êΪ£¨a£¬-$\frac{\sqrt{3}}{3}a$£©£¬´Ó¶ø¿É±íʾ³öDCµÄ³¤£¬ÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½¿ÉÇóµÃ¡÷OBDµÄÃæ»ýÓëaµÄº¯Êý¹ØÏµÊ½£¬Óɶþ´Îº¯ÊýµÄÐÔÖÊ¿ÉÇóµÃ¡÷OBDµÄÃæ»ýµÄ×î´óÖµ£¬È»ºóÔÙÇóµÃ¡÷AOBµÄÃæ»ý£¬´Ó¶ø¿ÉÇóµÃËıßÐÎAODBµÄ×î´óÃæ»ý£®

½â´ð ½â£º£¨1£©ÈçͼËùʾ£º¹ýµãB×÷BC¡ÍOC£¬´¹×ãΪC£®

¡ß¡ÏBOA=150¡ã£¬OB=OA£¬
¡à¡ÏBOC=30¡ã£¬OB=2£®
¡àBC=1£¬OC=$\sqrt{3}$£®
¡àµãBµÄ×ø±êΪ£¨-$\sqrt{3}$£¬1£©£®
½«£¨0£¬0£©¡¢£¨2£¬0£©¡¢£¨-$\sqrt{3}$£¬1£©´úÈëÅ×ÎïÏߵĽâÎöʽµÃ£º$\left\{\begin{array}{l}{c=0}\\{4a+2b+c=0}\\{3a-\sqrt{3}b+c=1}\end{array}\right.$£¬
½âµÃ£ºc=0£¬a=$\frac{2\sqrt{3}-3}{3}$£¬b=$\frac{6-4\sqrt{3}}{3}$£¬
¹ÊÅ×ÎïÏߵĽâÎöʽΪy=$\frac{2\sqrt{3}-3}{3}$x2+$\frac{6-4\sqrt{3}}{3}$x£®
£¨2£©ÓÉx=-$\frac{b}{2a}$¿ÉÖª£»x=1£®
ÉèµãPµÄ×ø±êΪ£¨1£¬a£©£®
µ±OP=OBʱ£¬Óɵã¼äµÄ¾àÀ빫ʽ¿ÉÖª£º12+a2=2£¬½âµÃa=¡À$\sqrt{3}$£¬
¡ßa=¡À$\sqrt{3}$£¬
¡àµãPµÄ×ø±êΪ£¨1£¬$\sqrt{3}$£©»ò£¨1£¬-$\sqrt{3}$£©£®
µ±PO=PBʱ£¬ÓÉÁ½µã¼äµÄ¾àÀ빫ʽ¿ÉÖª£»12+a2=£¨1+$\sqrt{3}$£©2+£¨a-1£©2£¬½âµÃ£ºa=2+$\sqrt{3}$£®
¡ßa=2+$\sqrt{3}$£®
¡àµãPµÄ×ø±ê£¨1£¬2+$\sqrt{3}$£©£®
µ±PB=OBʱ£®
¡ßPB¡Ý$\sqrt{3}$+1£¬OB=2£¬
¡àPB£¾OB£®
¡à´ËÖÖÇé¿ö²»³ÉÁ¢£®
¡àµãPµÄ×ø±êΪ£¨1£¬$\sqrt{3}$£©»ò£¨1£¬-$\sqrt{3}$£©»ò£¨1£¬2+$\sqrt{3}$£©£®
£¨3£©Èçͼ2Ëùʾ£º¹ýµãD×÷xÖáµÄ´¹Ïߣ¬½»OBÓÚµãC£®

ÉèOBµÄ½âÎöʽΪy=kx£®
¡ß½«µãBµÄ×ø±ê´úÈëµÃ£º-$\sqrt{3}$k=1£¬½âµÃk=-$\frac{\sqrt{3}}{3}$£¬
¡àÖ±ÏßOBµÄ½âÎöʽΪy=$-\frac{\sqrt{3}}{3}$x£®
ÉèµãDµÄ×ø±êΪ£¨a£¬$\frac{2\sqrt{3}-3}{3}$a2+$\frac{6-4\sqrt{3}}{3}$a£©£¬ÔòµãCµÄ×ø±êΪ£¨a£¬-$\frac{\sqrt{3}}{3}a$£©£®
¡à¡÷OBDµÄÃæ»ý=$\frac{1}{2}$¡Á$\sqrt{3}$¡Á£¨$\frac{3-2\sqrt{3}}{3}$a2+$\frac{3\sqrt{3}-6}{3}$a£©=$\frac{3\sqrt{3}-6}{6}{a}^{2}+\frac{9-6\sqrt{3}}{6}$a£®
¡àµ±a=$-\frac{\sqrt{3}}{2}$ʱ£¬¡÷OBDµÄÃæ»ý×î´óÖµ£¬¡÷OBDµÄÃæ»ýµÄ×î´óÖµ=$\frac{2-\sqrt{3}}{2}$£®
¡ß¡÷AOBµÄÃæ»ý=$\frac{1}{2}¡Á2¡Á1$=1£¬
¡àËıßÐÎAODBµÄ×î´óÃæ»ý=1+$\frac{2-\sqrt{3}}{2}$=$\frac{4-\sqrt{3}}{2}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁË´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý¡¢¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢Á½µã¼äµÄ¾àÀ빫ʽ¡¢ÌØÊâÈñ½ÇÈý½Çº¯ÊýÖµ¡¢¶þ´Îº¯ÊýµÄ×îÖµ£¬ÇóµÃ¡÷OBDµÄÃæ»ýÓëµãDµÄºá×ø±êÖ®¼äµÄº¯Êý¹ØÏµÊ½ÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÔÚ3£¬-7£¬-$\frac{2}{3}$£¬5.$\stackrel{•}{6}$£¬0£¬-8$\frac{1}{4}$£¬15£¬$\frac{1}{9}$£¬31.25£¬-3.5£¬20%ÖУ¬ÊÇСÊýµÄÓÐ-$\frac{2}{3}$£¬5.$\stackrel{•}{6}$£¬-8$\frac{1}{4}$£¬$\frac{1}{9}$£¬31.25£¬-3.5£¬20%£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚRt¡÷ABCÖУ¬ÒÑÖª¡ÏC=90¡ã£¬BC=6£¬cosB=$\frac{3}{4}$£¬ÇóACµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®»¯¼òÏÂÁи÷ʽ£º
£¨1£©£¨x-1£©2£¨x+1£©2-1£»
£¨2£©$\frac{{x}^{2}-8x+16}{{x}^{2}+2x}$¡Â£¨$\frac{12}{x+2}$-x+2£©+$\frac{1}{x+4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔÚ¾ØÐÎABCDÖУ¬AD=5£¬AB=3£¬µãE£¬FÔÚÖ±ÏßADÉÏ£¬ÇÒËıßÐÎBCFEΪÁâÐΣ¬ÈôÏß¶ÎEFµÄÖеãΪµãM£¬ÔòÏß¶ÎAMµÄ³¤Îª6.5»ò1.5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¶Ôx¡¢y¶¨ÒåÒ»ÖÖÐÂÔËËãT£¬¹æ¶¨£ºT£¨x£¬y£©=$\frac{ax+by}{2x+y}$£¨ÆäÖÐa¡¢b¾ùΪ·ÇÁã³£Êý£©£¬ÕâÀïµÈʽÓÒ±ßÊÇͨ³£µÄËÄÔòÔËË㣬ÀýÈ磺T£¨0£¬1£©=$\frac{a¡Á0+b¡Á1}{2¡Á0+1}$=b£¬ÒÑÖªT£¨1£¬-1£©=-2£¬T£¨4£¬2£©=1£¬Èô¹ØÓÚmµÄ²»µÈʽ×é$\left\{\begin{array}{l}{T£¨2m£¬5-4m£©¡Ü4}\\{T£¨m£¬3-2m£©£¾P}\end{array}\right.$Ç¡ºÃÓÐ3¸öÕûÊý½â£¬ÔòʵÊýPµÄȡֵ·¶Î§ÊÇ-2¡ÜP£¼-$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Éèa¡¢b¡¢cÂú×ã$\left\{\begin{array}{l}{{a}^{2}-bc-8a+7=0}\\{{b}^{2}+{c}^{2}+bc-6a+6=0}\end{array}\right.$
£¨1£©ÇóaµÄ·¶Î§£»
£¨2£©¶ÔÂú×ã·½³Ì×飨*£©µÄÈÎÒâaÖµ£¬¶¼ÓÐ$\sqrt{a+3}$-a£¾m£¨mΪ³£Êý£©£¬ÇómµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÏÈÔĶÁÏÂÃæµÄÀýÌ⣬ÔÙÍê³É×÷Òµ£®
ÀýÌ⣮½â²»µÈʽ£¨3x-2£©£¨2x+1£©£¾0£®
½â£ºÓÉÓÐÀíÊýµÄ³Ë·¨·¨Ôò¿ÉÖª¡°Á½ÊýÏà³Ë£¬Í¬ºÅµÃÕý¡±£®Òò´Ë¿ÉµÃ¢Ù$\left\{\begin{array}{l}{3x-2£¾0}\\{2x+1£¾0}\end{array}\right.$ »ò¢Ú$\left\{\begin{array}{l}{3x-2£¼0}\\{2x+1£¼0}\end{array}\right.$£¬½â²»µÈʽ×é¢ÙµÃx£¾$\frac{2}{3}$£¬½â²»µÈʽ×é¢ÚµÃx£¼-$\frac{1}{2}$£¬ËùÒÔ²»µÈʽ£¨3x-2£©£¨2x+1£©£¾0µÄ½â¼¯ÊÇx£¼-$\frac{1}{2}$»òx£¾$\frac{2}{3}$£®
£¨1£©Çó²»µÈʽ$\frac{x+2}{3x+5}$£¼0µÄ½â¼¯£»
£¨2£©ÀýÌâºÍ£¨1£©µÄ½â·¨¹ý³ÌÌåÏÖÁËÊýѧÖеÄʲô˼Ï룿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®¡÷ABCÖУ¬¡ÏA£º¡ÏB£º¡ÏC=2£º3£º4£¬Ôò¡ÏAµÄ¶ÈÊýΪ£¨¡¡¡¡£©
A£®35¡ãB£®40¡ãC£®70¡ãD£®110¡ã

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸