【题目】如图,CA⊥AB,垂足为 A,AB=24,AC=12,射线 BM⊥AB,垂足为 B, 一动点 E 从 A点出发以 3 厘米/秒沿射线 AN 运动,点 D 为射线 BM 上一动点, 随着 E 点运动而运动,且始终保持 ED=CB,当点 E 经过______秒时,△DEB 与△BCA 全等.
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y= x2+bx+c与一次函数y= x﹣3的图象都经过x轴上点A(4,0)和y轴上点B(0,﹣3),过动点M(m,0)(0<m<4)作x轴的垂线交直线AB于点C,交抛物线于点P.
(1)求b,c的值;
(2)点M在运动的过程中,能否使△PBC为直角三角形?如果能,求出点P的坐标;如果不能,请说明理由;
(3)如图2,过点P作PD⊥AB于点,设△PCD的面积为S1 , △ACM的面积为2 , 若 = ,
①求m的值;
②如图3,将线段OM绕点O顺时针旋转得到OM′,旋转角为α(0°<α<90°),连接M'A、M'B,求M'A+ M'B的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学课上,老师提出如下问题:已知:线段a,b(如图1).
求作:等腰△ABC,使AB=AC,BC=a,BC边上的高为b.
小姗的作法如下:如图2,
(i)作线段BC=a;
(ii)作线段BC的垂直平分线MN交线段BC于点D;
(iii)在MN上截取线段DA=b,连接AB,AC.所以,△ABC就是所求作的等腰三角形.
老师说:“小姗的作法正确”.
请回答:得到△ABC是等腰三角形的依据是: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC=90°,DE⊥AC于点E,且AE=CE,DE=5,EB=12.
(1)求AD的长;
(2)若∠CAB=30°,求四边形ABCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 中,BO 平分∠ABC,CO 平分∠ACB,MN 经过点 O,与 AB、AC 相交于点 M、N,且 MN∥BC,那么下列说法中:①∠MOB=∠MBO②△AMN 的周长等于 AB+AC;③∠A=2∠BOC﹣180°;④连接 AO,则::=AB:AC:BC;正确的有( )
A. ①②④ B. ①②③ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E 是 BC 的中点,DE 平分∠ADC.
(1)如图 1,若∠B=∠C=90°,求证:AE 平分∠DAB;
(2)如图 2,若 DE⊥AE,求证:AD=AB+CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们用表示不大于的最大整数,例如:,,;用表示大于的最小整数,例如:,,.解决下列问题:
(1)= ,,= ;
(2)若=2,则的取值范围是 ;若=-1,则的取值范围是 ;
(3)已知,满足方程组,求,的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程或方程组解应用题: 在某场CBA比赛中,某位运动员的技术统计如表所示:
技术 | 上场时间(分钟) | 出手投篮(次) | 投中 | 罚球得分(分) | 篮板 | 助攻(次) | 个人总得分(分) |
数据 | 38 | 27 | 11 | 6 | 3 | 4 | 33 |
注:(i)表中出手投篮次数和投中次数均不包括罚球;
(ii)总得分=两分球得分+三分球得分+罚球得分.
根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在学习贯彻十九大精神“我学习,我践行”的活动中,计划组织全校1300名师生到林业部门规划的林区植树,经研究,决定租用当地出租车公司提供的两种型号的客车共50辆作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量与租车信息:
型号 | 载客量 | 租金单价 |
30人/辆 | 300元/辆 | |
20人/辆 | 240元/辆 |
注:载客量指的是每辆车客车最多可载该校师生的人数
(1)设租用型号客车辆,租车总费用元,求与的函数解析式,并直接写出的取值范围;
(2)若要使租车总费用不超过13980元,一共有几种租车方案?哪种租车方案最省钱?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com