如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△AB
C的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.
(1)在正方形网格中,画出△AB′C′;
(2)计算线段AB在变换到AB′的过程中扫过区域的面积.
![]()
科目:初中数学 来源: 题型:
【问题情境】如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
【结论运用】如图2,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
【迁移拓展】图3是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,
ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=8,AD=3,BD=7;M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平行四边形ABCD中,点E是边AD的中点,连接EC交对角线BD于点F,则S△DEF:S△BCF等于( )
![]()
A.1:2 B.1:4 C.1:9 D.4:9
查看答案和解析>>
科目:初中数学 来源: 题型:
二次函数y=ax2+bx+c(a为常数,且a≠0)的图象过点A(0,1),B(1,﹣2)和C(3,﹣2).
(1)求二次函数表达式;
(2)若m>n>2,比较m2﹣4m与n2﹣4n的大小;
(3)将抛物线y=ax2+bx+c平移,平移后图象的顶点为(h,k),若平移后的抛物线与直线y=x﹣1有且只有一个公共点,请用含h的代数式表示k.
查看答案和解析>>
科目:初中数学 来源: 题型:
已知二次函数y=﹣x2﹣
x+1,当自变量x取m时,对应的函数值大于0,设自变量分别取m﹣3,m+3时对应的函数值为y1,y2,则下列判断正确的是( )
A.y1<0,y2<0 B.y1<0,y2>0 C.y1>0,y2<0 D.y1>0,y2>0
查看答案和解析>>
科目:初中数学 来源: 题型:
某电器厂五月份生产液晶电视5000台,因市场销售业绩不佳,产品严重积压,以致六月份的产量减少了10%,后调整定价,并在电视台做广告,结果销量持续攀升,于是该厂从七月份起产量开始上升,八月份达到6480台,那么该厂七、八月份的产量平均增长率是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com