【题目】如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.
(1)判断△A1A2B2的形状,并给出证明;
(2)求乙船每小时航行多少海里?
【答案】(1)△A1A2B2是等边三角形;(2)20海里
【解析】
(1)由给出的角度及三角形各边长,得出△A1A2B2的形状.
(2)先求出B1B2的距离,再由时间求出乙船航行的速度.
(1)△A1A2B2是等边三角形,理由如下:
连结A1B2.
∵甲船以每小时30海里的速度向正北方向航行,航行20分钟到达A2,
∴A1A2=30=10 ,
又∵A2B2=10 ,∠A1A2B2=60°,
∴△A1A2B2是等边三角形;
(2)过点B作B1N∥A1A2,如图,
∵B1N∥A1A2,
∴∠A1B1N=180°﹣∠B1A1A2=180°﹣105°=75°,
∴∠A1B1B2=75°﹣15°=60°.
∵△A1A2B2是等边三角形,
∴∠A2A1B2=60°,A1B2=A1A2=10,
∴∠B1A1B2=105°﹣60°=45°.
在△B1A1B2中,
∵A1B2=10,∠B1A1B2=45°,∠A1B1B2=60°,
过点B作BE⊥A1B1,
由余弦定理,解得B1B2= ,
所以乙船每小时航行:海里.
科目:初中数学 来源: 题型:
【题目】如图,在RtΔABC中,∠C=90°,AC=4,BC=3.
(1)如图(1),四边形DEFG为ABC的内接正方形,求正方形的边长.
(2)如图(2),三角形内有并排的两个相等的正方形,它们组成的矩形内接于ΔABC,求正方形的边长.
(3)如图(3),三角形内有并排的三个相等的正方形,它们组成的矩形内接于ΔABC,求正方形的边长.
(4) 如图(4),三角形内有并排的n个相等的正方形,它们组成的矩形内接于ΔABC,请写出正方形的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中错误的命题有( )
①线段垂直平分线上的点与这条线段两端点距离相等;
②若两三角形关于直线L对称,则对应线段所在的直线必相交,且交点在对称轴上;
③顶角和底边对应相等的两个等腰三角形全等;
④一腰和一腰上的高对应相等的两个等腰三角形全等;
⑤有一边上的高也是这边上的中线的等腰三角形是等边三角形
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为评估九年级学生的学习成绩状况,以应对即将到来的中考做好教学调整,某中学抽取了部分参加考试的学生的成绩作为样本分析,绘制成了如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:
(1)求本中学成绩类别为“中”的人数;
(2)求出扇形图中,“优”所占的百分比,并将条形统计图补充完整;
(3)该校九年级共有1000人参加了这次考试,请估算该校九年级共有多少名学生的数学成绩达到优秀?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴相交于A.B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4).P(3,4).N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3.则a﹣b+c的最小值是( )
A.﹣15B.﹣12C.﹣4D.﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.
①求m的取值范围;
②设x1,x2是方程的两根且x12+x22+x1x2-17=0,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2015年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.
(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车.
(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知型车的进价为500元/辆,售价为700元/辆,型车进价为1000元/辆,售价为1300元/辆.根据销售经验,型车进货量不少于型车的2倍,但不超过型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com