【题目】如图点P为双曲线上一动点.连接OP并延长到点A,使,过点A作x轴的垂线,垂足为B,交双曲线于点C.当时,连接PC,将沿直线PC进行翻折,则翻折后的与四边形BOPC的重叠部分(图中阴影部分)的面积是_______________
科目:初中数学 来源: 题型:
【题目】菱形ABCD中,AB=8,∠B=120°,沿过菱形不同的顶点裁剪两次,再将所裁下的图形拼接,若恰好能无缝,无重叠的拼接成一个矩形,则所得矩形的对角线长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为□ABCD的对称中心,点A的坐标为(-2,-2),AB=5,AB//x轴,反比例函数y=的图象经过点D,将□ABCD沿y轴向下平移,使点C的对应点C′落在反比例函数的图象上,则平移过程中线段AC扫过的面积为( )
A.10B.18C.20D.24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+mx(m<0)交x轴于O,A两点,顶点为点B.
(1)求△AOB的面积(用含m的代数式表示);
(2)直线y=kx+b(k>0)过点B,且与抛物线交于另一点D(点D与点A不重合),交y轴于点C.过点C作CE∥AB交x轴于点E.
(ⅰ) 若∠OBA=90°,2<<3,求k的取值范围;
(ⅱ) 求证:DE∥y轴.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C坐标为(﹣1,0),tan∠ACO=2.一次函数y=kx+b的图象经过点B、C,反比例函数y=的图象经过点B.
(1)求一次函数关系式和反比例函数的关系式;
(2)当x<0时,kx+b﹣<0的解集为 ;
(3)若x轴上有两点E、F,点E在点F的左边,且EF=1.当四边形ABEF周长最小时,请直接写出点E的横坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为维护我国海洋权益,强化管辖海域的实际控制,国家海洋局决定实施常态化的海洋维权巡航执法,开展多种形式的海洋维权行动:外国船只除特许外,不得进入我国海洋100海里以内的区域.如图,设A、B是我们的观察站,A和B之间的距离为160海里,海岸线是过A、B的一条直线.一外国船只在C点,在A点测得∠BAC=45°,同时在B点测得∠ABC=60°,问此时是否要向外国船只发出警告,令其退出我国海域.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O是边长为6的等边△ABC的外接圆,点D,E分别是BC,AC上两点,且BD=CE,连接AD,BE相交于点P,延长线段BE交⊙O于点F,连接CF.
(1)求证:AD∥FC;
(2)连接PC,当△PEC为直角三角形时,求tan∠ACF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,AC为直径,点D为弧ACB的中点,过点D的切线与BC的延长线交于点E.
(1)用尺规作图作出圆心O;(保留作图痕迹,不写作法);
(2)求证:DE⊥BC;
(3)若OC=2CE=4,求图中阴影部分面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com