【题目】如图,△ABC中,∠C=90°,BD平分∠ABC,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好经过点D.
(1)求证:直线AC是⊙O的切线;
(2)若∠A=30°,⊙O的半径是2,求线段CD的长.
【答案】(1)详见解析;(2)CD=
【解析】
(1)连接DO,根据圆的性质及角平分线的性质得到OD∥BC,再利用平行线的性质得到∠ODA=∠C=90°,即可得到结论;
(2)先根据∠A=30°求出OA得到AB及BC,再设DC=x,则DB=2x,利用勾股定理求出CD的长.
(1)证明:连接DO,
∵BD平分∠ABC,
∴∠DBC=∠DBA,
∵OD=OB,
∴∠ODB=∠DBA,
∴∠ODB=∠DBC,
∴OD∥BC,
∴∠ODA=∠C=90°,
∴直线AC是⊙O的切线;
(2)在Rt△ADO中,∠A=30°,
∴AO=2DO=4
∴AB=4+2=6
∴BC=3
在Rt△BCD中,
∠ABC=90°-30°=60°
∴∠DBC=∠DBA=30°
设DC=x,则DB=2x
x2+9=4 x2,解之得,x =
∴CD=.
科目:初中数学 来源: 题型:
【题目】如图所示,一副篮架由配重、支架、篮板与篮筐组成,在立柱的C点观察篮板上沿D点的仰角为45°,在支架底端的A点观察篮板上沿D点的仰角为54°,点C与篮板下沿点E在同一水平线,若AB=1.91米,篮板高度DE为1.05米,求篮板下沿E点与地面的距离.(结果精确到0.1m,参考数据:sin54°≈0.80, cos54°≈0.60,tan54°≈1.33)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;
(2)若的长为π,求“回旋角”∠CPD的度数;
(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13,直接写出AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,已知:,,,以斜边AB的中点P为旋转中心,把这个三角形按逆时针方向旋转得到,则旋转前后两个直角三角形重叠部分的面积为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为( )
A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为6的等边△ABC中,AD是BC边上的中线,点E是△ABC内一个动点,且DE=2,将线段AE绕点A逆时针旋转60°得到AF,则DF的最小值是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以Rt△ABC各边为边分别向外作等边三角形,编号为①、②、③,将②、①如图所示依次叠在③上,已知四边形EMNC与四边形MPQN的面积分别为9与7,则斜边BC的长为( )
A.5B.9C.10D.16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年是决胜全面建成小康社会冲锋之年,为进一步加快脱贫攻坚步伐,某市出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为A、B、C、D类贫困户.为检査帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:
请根据图中信息回答下面的问题:
(1)求本次抽样调查贫困户总户数,并补全条形统计图;
(2)若该地共有15000户贫困户,请估计至少得到3项帮扶措施的大约有多少户;
(3)为更好地做好精准扶贫工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用列表法或画树状图的方法,求出恰好选中甲和丙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.
(1)求本次调查的学生总人数,并补全条形统计图;
(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;
(3)该校共有学生3000人,请你估计该校对在线阅读最感兴趣的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com