【题目】如图,在ABCD中,E、F为边BC上两点,BF=CE,AE=DF.
(1)求证:△ABE≌△DCF;(2)求证:四边形ABCD是矩形.
【答案】(1)见解析;(2)见解析.
【解析】
(1)根据平行四边形的性质得到AB=DC.根据全等三角形的判定定理即可得到结论.
(2)根据全等三角形的性质得到∠B=∠C.根据平行四边形的性质得到AB∥CD.根据矩形的判定定理即可得到结论.
(1)证明:∵四边形ABCD是平行四边形,
∴AB=DC.
∵BF=CE,
∴BF﹣EF=CE﹣EF,
∴BE=CF.
在△ABE和△DCF中,
∵,
∴△ABE≌△DCF(SSS);
(2)证明:∵△ABE≌△DCF,
∴∠B=∠C.
∵四边形ABCD是平行四边形,
∴AB∥CD.
∴∠B+∠C=180°.
∴∠B=∠C=90°.
∵四边形ABCD是平行四边形,∠B=90°,
∴四边形ABCD是矩形.
科目:初中数学 来源: 题型:
【题目】某超市要进一批鸡蛋进行销售,有、两家农场可供货.为了比较两家提供的鸡蛋单个大小,超市分别对这两家农场的鸡蛋进行抽样检测,通过分析数据确定鸡蛋的供货商.
(1)下列抽样方式比较合理的是哪一种?请简述原因.
①分别从、两家提供的一箱鸡蛋中拿出最上面的两层(共40枚)鸡蛋,并分别称出其中每一个鸡蛋的质量.
②分别从、两家提供的一箱鸡蛋中每一层随机抽4枚(共40枚)鸡蛋,并分别称出其中每个鸡蛋的质量.
(2)在用合理的方法抽出两家提供的鸡蛋各40枚后,分别称出每个鸡蛋的质量(单位:),结果如表所示(数据包括左端点不包括右端点).
45~47 | 47~49 | 49~51 | 51~53 | 53~55 | |
农场鸡蛋 | 2 | 8 | 15 | 10 | 5 |
农场鸡蛋 | 4 | 6 | 12 | 14 | 4 |
①如果从这两家农场提供的鸡蛋中随机拿一个,分别估计两家鸡蛋质量在(单位:)范围内的概率(数据包括左端点不包括右端点);
②如果你是超市经营者,试通过数据分析确定选择哪家农场提供的鸡蛋.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,并完成相应的任务.
托勒密定理:
托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.
托勒密定理:
圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.
已知:如图1,四边形ABCD内接于⊙O,
求证:ABCD+BCAD=ACBD
下面是该结论的证明过程:
证明:如图2,作∠BAE=∠CAD,交BD于点E.
∵
∴∠ABE=∠ACD
∴△ABE∽△ACD
∴
∴ABCD=ACBE
∵
∴∠ACB=∠ADE(依据1)
∵∠BAE=∠CAD
∴∠BAE+∠EAC=∠CAD+∠EAC
即∠BAC=∠EAD
∴△ABC∽△AED(依据2)
∴ADBC=ACED
∴ABCD+ADBC=AC(BE+ED)
∴ABCD+ADBC=ACBD
任务:(1)上述证明过程中的“依据1”、“依据2”分别是指什么?
(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理: .
(请写出)
(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C为的中点,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,连接点为上一点,使得连接交于点,作交的延长线于点.
(1)求证:.
(2)若求的长.
(3)在(2)的条件下,将沿着对折得到点的对应点为点,连接试求的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,反比例函数y= 的图象与一次函数y=x+b的图象交
于点A(1,4)、点B(-4,n).
(1)求一次函数和反比例函数的解析式;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一张半径为的圆形纸片,点为圆心,将该圆形纸片沿直线折叠,直线交于两点.
(1)若折叠后的圆弧恰好经过点,利用直尺和圆规在图中作出满足条件的一条直线(不写作法,保留作图痕迹),并求此时线段的长度.
(2)已知是一点,.
①若折叠后的圆弧经过点,则线段长度的取值范围是________.
②若折叠后的圆弧与直线相切于点,则线段的长度为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,点E在对角线AC上,点F在边CD上,连接BE、EF.若∠EFC=90°+∠CBE,BE=7,EF=10.则点D到EF的距离为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A,点C在反比例函数y=(k>0,x>0)的图象上,AB⊥x轴于点B,OC交AB于点D,若CD=OD,则△AOD与△BCD的面积比为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的材料:
如果函数 y=f(x)满足:对于自变量 x 的取值范围内的任意 x1,x2,
(1)若 x1<x2,都有 f(x1)<f(x2),则称 f(x)是增函数;
(2)若 x1<x2,都有 f(x1)>f(x2),则称 f(x)是减函数.
例题:证明函数f(x)= (x>0)是减函数.
证明:设 0<x1<x2,
f(x1)﹣f(x2)=.
∵0<x1<x2,
∴x2﹣x1>0,x1x2>0.
∴>0.即 f(x1)﹣f(x2)>0.
∴f(x1)>f(x2).
∴函数 f(x)= (x>0)是减函数.
根据以上材料,解答下面的问题:
已知函数.
f(﹣1)= +(﹣2)=-1,f(﹣2)= +(﹣4)=.
(1)计算:f(﹣3)= ,f(﹣4)= ;
(2)猜想:函数是 函数(填“增”或“减”);
(3)请仿照例题证明你的猜想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com