精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A.B.C.D四个顶点正好重合于上底面上一点).已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).

(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;

(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?

【答案】解:(1)根据题意,知这个正方体的底面边长a=x,EF=a=2x,

x+2x+x=24,解得:x=6。则 a=6

V=a3=(63=432(cm3);

(2)设包装盒的底面边长为acm,高为hcm,则a= x,

S=4ah+a2=

0<x<12,当x=8时,S取得最大值384cm2

解析二次函数的应用。

(1)根据已知得出这个正方体的底面边长a=x,EF=a=2x,再利用AB=24cm,求出x即可得出这个包装盒的体积V。

(2)利用已知表示出包装盒的表面,从而利用函数最值求出即可。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:

摸棋的次数n

100

200

300

500

800

1000

摸到黑棋的次数m

24

51

76

124

201

250

摸到黑棋的频率(精确到0.001)

0.240

0.255

0.253

0.248

0.251

0.250

(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是   ;(精确到0.01)

(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°∠ABC=30°AC=2△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是 (  )

A. B. 2 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上)

1)△ABC的面积为   

2)在图中作出△ABC关于直线MN的对称图形△A'B'C'

3)在MN上找一点P,使得PB+PC的距离最短,这个最短距离为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DEBC上的点,AD平分∠BAECA=CD

1)求证:∠CAE=∠B

2)若∠B50°,∠C3DAB,求∠C的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程

(1)当m取何值时,方程有两个不相等的实数根?

(2)设方程的两个实数根分别为m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,CD是斜边AB上的中线,过点AAECD于点F,交CB于点E,且∠EAB=∠DCB

1)求∠B的度数:

2)求证:BC3CE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,线段AB的两个端点坐标分别为(﹣21)和(23).

1)在图中分别画出线段AB关于x轴的对称线段A1B1,并写出A1B1的坐标.

2)在x轴上找一点C,使AC+BC的值最小,在图中作出点C,并直接写出点C的坐标.

查看答案和解析>>

同步练习册答案