【题目】如图,在△ABC和△DCB中,∠BAC=∠CDB=90°,AB=DC,AC与BD交于点O.
(1)求证:△ABC≌△DCB.
(2)当∠DBC=30°,BC=6时,求BO的长.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.
(1)求点D坐标.
(2)求S关于t的函数关系式.
(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某体育用品商场用32000元购进了一批运动服,上市后很快销售一空.商场又用68000元紧急购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.
(1)该商场两次共购进这种运动服多少套?
(2)若两批运动服每套的售价相同,第二批售完后获利比第一批售完后获利多12000元,则每套运动服的售价是 元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某建筑商承接一条道路的铺设工程,需购置一批大小相同的花岗石板,它的长为160cm将这批花岗石板按如图①所示的两种方案进行切割(不计损耗,余料不再利用),切割后的M型和N型小花岗石板可拼成如图②所示的正方形(该图案不重叠无缝隙),图③的道路由若干个图②的正方形拼接而成(该图案不重叠无缝隙).
(1)M型小花岗石板的长AB= cm,宽AC= cm.
(2)现有110块花岗石板切割后恰好拼成若干个图②所示的正方形,并将这些正方形铺设成图③的道路,能铺设多少米?
(3)现有a张花岗石板,用方案甲切割;b张花岗石板,用方案乙切割,同时从外地材料公司调来M型小花岗石板64块.用完现有的M型和N型小花岗石板恰好能完整拼成如图③的道路图案,若61≤a≤69,则道路最多能铺设多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有一张五边形的钢板ABCDE如图所示,∠A=∠B=∠C=90°,现在AB边上取一点P,分别以AP,BP为边各剪下一个正方形钢板模型,所剪得的两个正方形面积和的最大值为_____m2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,它的对称轴与x轴交于点F,过点C作CE∥x轴交抛物线于另一点E,连结EF,AC.
(1)求该抛物线的表达式及点E的坐标;
(2)在线段EF上任取点P,连结OP,作点F关于直线OP的对称点G,连结EG和PG,当点G恰好落到y轴上时,求△EGP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,时注满水槽,水槽内水面的高度与注水时间之间的函数图像如图2所示.如果将正方体铁块取出,又经过____秒恰好将水槽注满.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,分别过B,C向经过点A的直线EF作垂线,垂足为E,F.
(1)如图1,当EF与斜边BC不相交时,请证明EF=BE+CF;
(2)如图2,当EF与斜边BC相交时,其他条件不变,写出EF、BE、CF之间的数量关系,并说明理由;
(3)如图3,猜想EF、BE、CF之间又存在怎样的数量关系,写出猜想,不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC纸片中,∠C=90°,AC=3,BC=4,点D在边BC上,以AD为折痕将△ABD折叠得到△AB’D,AB'与边BC交于点E.若△DEB’为直角三角形,则BD的长是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com