精英家教网 > 初中数学 > 题目详情

【题目】如图,已知:⊙O的直径AB与弦AC的夹角∠A30°,过点C作⊙O的切线交AB的延长线于点P

1)求证:ACCP

2)若PC6,求图中阴影部分的面积(结果精确到0.1).(参考数据:π3.14

【答案】1)证明见解析;(24.1

【解析】

1)连接OC.根据圆周角定理即可求得∠COP2ACO60°,根据切线的性质定理以及直角三角形的两个锐角互余,求得∠P30°,即可证明;

2)阴影部分的面积即为RtOCP的面积减去扇形OCB的面积.

1)证明:连接OC

AB是⊙O的直径,

AOOC

∴∠ACO=∠A30°

∴∠COP2ACO60°

PC切⊙O于点C

OCPC

∴∠P30°

∴∠A=∠P

ACPC

2)解:在RtOCP中,tanP=,∴,

S扇形COB

S阴影SOCPS扇形COB

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在矩形ABCD中,点EAD上,EC平分∠BED

1)试判断△BEC是否为等腰三角形,并说明理由.

2)若AB=1,∠ABE=45°,求BC的长.

3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=45°,点MN在边OB上,OMxONx+4,点P是边OA上的点,且△PMN是等腰三角形.在x>2的条件下,(1)当x______时,符合条件的点P只有一个;(2)当x______时,符合条件的点P恰好有三个.(两个小题都只写出一个数即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在不透明的袋子中有四张标有数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏。

小明画出树形图如下:

小华列出表格如下:

第一次

第二次

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(4,2)

3

(1,3

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

回答下列问题:

(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后 (填放回不放回),再随机抽出一张卡片;

(2)根据小华的游戏规则,表格中表示的有序数对为

(3)规定两次抽到的数字之和为奇数的获胜,你认为淮获胜的可能性大?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于BC两点.

(1)求yx之间的函数关系式;

(2)直接写出当x>0时,不等式x+b的解集;

(3)若点Px轴上,连接APABC的面积分成1:3两部分,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ABC2CBD平分∠ABC,交ACDAEBDEADDC35,则DEBE的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是( )

③若,则平分④若,则

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”

译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”

设每只雀重x斤,每只燕重y斤,可列方程组为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB3BC4,将对角线AC绕对角线交点O旋转,分别交边ADBC于点EF,点P是边DC上的一个动点,且保持DPAE,连接PEPF,设AEx0x3).

1)填空:PC   ,FC   ;(用含x的代数式表示)

2)求△PEF面积的最小值;

3)在运动过程中,PEPF是否成立?若成立,求出x的值;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案