【题目】如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP按顺时针方向旋转使点A与点C重合,这时P点旋转到G点.
(1)请画出旋转后的图形,说出此时△ABP以点B为旋转中心最少旋转了多少度;
(2)求出PG的长度;
(3)请你猜想△PGC的形状,并说明理由;
(4)请你计算∠BGC的角度.
【答案】(1)△ABP以点B为旋转中心最少旋转了90度;(2)2;(3)△PCG是直角三角形;(4)135°
【解析】
(1)直接利用旋转的性质即可得出结论;
(2)先判断出BP=BG,进而利用等腰直角三角形的性质即可得出结论;
(3)利用勾股定理的逆定理即可得出结论;
(4)先求出∠BGP=45°,再求出∠PGC=90°,即可得出结论.
解:(1)如图,
由旋转知,旋转角为∠ABC=90°,
∴△ABP以点B为旋转中心最少旋转了90度;
(2)连接PG,由旋转知,BP=BG,∠PBG=∠ABC=90°,
∵BP=2,
∴BG=BP=2,
∴PG=BP=2;
(3)由旋转知,CG=AP=1,
由(2)知,PG=2,
∵PC=3,
∴PG2+CG2=8+1=9,PC2=9,
∴PG2+CG2=PC2,
∴△PCG是直角三角形;
(4)由(2)知,BP=BG,∠PBG=90°,
∴∠BGP=45°,
由(3)知,△PCG是直角三角形,
∴∠PGC=90°,
∴∠BGC=∠BGP+∠PGC=135°.
科目:初中数学 来源: 题型:
【题目】对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知B港口位于A观测点的东北方向,且其到A观测点正北方向的距离BD的长为16千米,一艘货轮从B港口以48千米/时的速度沿如图所示的BC方向航行,15分后到达C处,现测得C处位于A观测点北偏东75°方向,求此时货轮与A观测点之间的距离AC的长(精确大0.1千米)(参考数据:1.41,1.73,2.24,≈2.45)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.
(1)若AH=3,HE=1,求△ABE的面积;
(2)若∠ACB=45°,求证:DF=CG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在宽20米,长32米的矩形土地上,修筑横向、纵向道路各一条,且它们互相垂直,若纵向道路的宽是横向道路的宽的2倍,要使剩余土地的面积为504平方米,求横向道路的宽为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上点A表示数字6,点B表示数字﹣4
(1)画数轴,并在数轴上标出点A与点B;
(2)数轴上一动点C从点A出发,沿数轴的负方向以每秒2个单位长度的速度移动,经过4秒到达点E,数轴上另一动点D从点B出发,沿数轴的正方向以每秒1个单位长度的速度移动,经过8秒到达点F,求出点E与点F所表示的数,并在第(1)题的数轴上标出点E,点F;
(3)在第(2)题的条件下,在数轴上找出点H,使点H到点E距离与点H到点F距离之和为8,请在数轴上直接标出点H.(不需写出求解过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com