【题目】如图,直线y=-2x-10与x轴交于点A,直线y=-x交于点B,点C在线段AB上,⊙C与x轴相切于点P,与OB切于点Q.求:(1)A点的坐标;(2)OB的长;(3)C点的坐标.
【答案】(1)(-5,0);(2)(-8,6);(3)(-6,2).
【解析】
试题(1)利用y=0,则-2x-10=0,进而求出x的值得出A点坐标即可;
(2)将直线与直线联立求出交点坐标即可;
(3)利用切线的性质以及三角形面积公式求出S△BAO=S△BCO+S△AOC,进而得出C点纵坐标,即可得出答案.
试题解析:(1)∵直线与x轴交于点A,
∴y=0,则-2x-10=0,解得:x=-5.
∴A点的坐标为:(-5,0).
(2)∵直线与x轴交于点A,直线交于点B,
∴,解得:.
∴B点坐标为:(-8,6).
(3)如图,连接CQ,CP,
∵B点坐标为;(-8,6),∴可求得:BO=10.
∵点C在线段AB上,⊙C与x轴相切于点P,与OB切于点Q,∴CP⊥x轴,CQ⊥BO,PC=CQ.
∴S△BAO=×6×5=S△BCO+S△AOC=(PC×5+CQ×BO).
∴30=PC(5+10),解得:PC=2.
∴C点纵坐标为:2.
∴P点横坐标为:2=-2x-10,解得:x=-6.
∴C点坐标为:(-6,2).
科目:初中数学 来源: 题型:
【题目】如图,已知一个由小正方体组成的几何体的左视图和俯视图.
该几何体最少需要几块小正方体?最多可以有几块小正方体?
请画出该几何体的所有可能的主视图.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )
A. 抛一枚硬币,出现正面朝上
B. 掷一个正六面体的骰子,出现3点朝上
C. 一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
D. 从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是△ABC的内心,线段AE的延长线交△ABC的外接圆于点D.
(1)求证:ED=BD;
(2)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+4与反比例函数y=的图象相交于A(-3,a)和B两点.
(1)求k的值;
(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;
(3)直接写出不等式>x的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+2x+a2,当x=m时,函数值y<0,则当x=m+2时,函数值y( )
A. 小于0 B. 等于0
C. 大于0 D. 与0的大小不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象经过点(-2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,-2)的上方,下列结论:
①b>0;②2a<b;③2a-b-1<0;④2a+c<0.其中正确结论是 _________(填正确序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=2x2-4x-6与x轴交于点A、B,与y轴交于点C.有下列说法:①抛物线的对称轴是x=1;②A、B两点之间的距离是4;③△ABC的面积是24;④当x<0时,y随x的增大而减小.其中,说法正确的是_________________.(只需填写序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,
(1)证明:△ABD≌△BCE;
(2)证明:△ABE∽△FAE;
(3)若AF=7,DF=1,求BD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com