【题目】如图①,已知Rt△ABC中,∠ACB=90°,AC=8,AB=10,点D是AC边上一点(不与C重合),以AD为直径作⊙O,过C作CE切⊙O于E,交AB于F.
(1)若⊙O半径为2,求线段CE的长;
(2)若AF=BF,求⊙O的半径;
(3)如图②,若CE=CB,点B关于AC的对称点为点G,试求G、E两点之间的距离.
【答案】(1)CE=4;(2)⊙O的半径为3;(3)G、E两点之间的距离为9.6
【解析】
(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;
(2)由勾股定理求得BC,然后通过证得△OEC∽△BCA,得到,即 解得即可;
(3)证得D和M重合,E和F重合后,通过证得△GBE∽△ABC,,即,解得即可.
解:(1)如图①,连接OE,
∵CE切⊙O于E,
∴∠OEC=90°,
∵AC=8,⊙O的半径为2,
∴OC=6,OE=2,
∴CE= ;
(2)设⊙O的半径为r,
在Rt△ABC中,∠ACB=90°,AB=10,AC=8,
∴BC= =6,
∵AF=BF,
∴AF=CF=BF,
∴∠ACF=∠CAF,
∵CE切⊙O于E,
∴∠OEC=90°,
∴∠OEC=∠ACB,
∴△OEC∽△BCA,
∴,即
解得r=3,
∴⊙O的半径为3;
(3)如图②,连接BG,OE,设EG交AC于点M,
由对称性可知,CB=CG,
∵CE=CG,
∴∠EGC=∠GEC,
∵CE切⊙O于E,
∴∠GEC+∠OEG=90°,
∵∠EGC+∠GMC=90°,
∴∠OEG=∠GMC,
∵∠GMC=∠OME,
∴∠OEG=∠OME,
∴OM=OE,
∴点M和点D重合,
∴G、D、E三点在同一直线上,
连接AE、BE,
∵AD是直径,
∴∠AED=90°,即∠AEG=90°,
又CE=CB=CG,
∴∠BEG=90°,
∴∠AEB=∠AEG+∠BEG=180°,
∴A、E、B三点在同一条直线上,
∴E、F两点重合,
∵∠GEB=∠ACB=90°,∠B=∠B,
∴△GBE∽△ABC,
∴ ,即
∴GE=9.6,
故G、E两点之间的距离为9.6.
科目:初中数学 来源: 题型:
【题目】初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.
男、女生所选项目人数统计表
项目 | 男生(人数) | 女生(人数) |
机器人 | 7 | 9 |
3D打印 | m | 4 |
航模 | 2 | 2 |
其他 | 5 | n |
根据以上信息解决下列问题:
(1)m=_____,n=_____;
(2)扇形统计图中机器人项目所对应扇形的圆心角度数为_____°;
(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABF中,以AB为直径的作⊙O,∠BAF的平分线AD交⊙O于点D,AF与⊙O交于点E,过点B的切线交AF的延长线于点C
(1)求证:∠FBC=∠FAD;
(2)若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的圆O交AC于点D,交BC于点E,以点B为顶点作∠CBF,使得∠CBF=∠BAC,交AC延长线于点F连接BD、AE,延长AE交BF于点G,
(1)求证:BF为⊙O的切线;(2)求证:ACBC=BDAG;(3)若BC=2,CD:CF=4:5,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.
(1) 如图1,当点D在线段BC上时:
①求证:△AEB≌△ADC;②求证:四边形BCGE是平行四边形;
(2)如图2,当点D在BC的延长线上,且CD=BC时,试判断四边形BCGE是什么特殊的四边形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,抛物线y=﹣x2+2x+6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,其对称轴与抛物线交于点D.与x轴交于点E.
(1)求点A,B,D的坐标;
(2)点G为抛物线对称轴上的一个动点,从点D出发,沿直线DE以每秒2个单位长度的速度运动,过点C作x轴的平行线交抛物线于M,N两点(点M在点N的左边).
设点G的运动时间为ts.
①当t为何值时,以点M,N,B,E为顶点的四边形是平行四边形;
②连接BM,在点G运动的过程中,是否存在点M.使得∠MBD=∠EDB,若存在,求出点M的坐标;若不存在,请说明理由;
(3)点Q为坐标平面内一点,以线段MN为对角线作萎形MENQ,当菱形MENQ为正方形时,请直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P、Q两点,点P在点Q的右边,若P点的坐标为(-1,2),则Q点的坐标是
A. (-4,2) B. (-4.5,2) C. (-5,2) D. (-5.5,2 )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,己知成绩x(单位:分)均满足“50≤x<100”,每组成绩包含最小值,不包含最大值.根据图中信息回答下列问题:
(1)图中a的值为_____;若要绘制该样本的扇形统计图,则成绩x在“70≤x<80”所对应扇形的圆心角度数为__________;
(2)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀“的学生大约有多少人?
(3)在这些抽查的样本中,小明的成绩为92分,若从成绩在“50≤x<60”和“90≤x<100”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了增强学生的环保意识,某校团委组织了一次“环保知识”考试,考题共10题考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:
(1)“答对10题”所对应扇形的心角为_____;
(2)通过计算补全条形统计图;
(3)若该校共有2000名学生参加这次“环保知识”考试,请你估计该校答对不少于8题的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com