精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABF中,以AB为直径的作⊙O,∠BAF的平分线AD交⊙O于点DAF与⊙O交于点E,过点B的切线交AF的延长线于点C

1)求证:∠FBC=∠FAD

2)若,求的值.

【答案】1)见解析;(2

【解析】

1)根据等角的余角相等即可证明.

2)连接DE.证明AED∽△BFC即可解决问题.

1)证明:∵AB是直径,

∴∠ADB90°

又∵AD平分∠BAF

∴∠BAD=∠FAD

BC切⊙OB点,

∴∠ABC90°

∴∠BAD+ABD=∠FBC+ABD90°

∴∠BAD=∠FBC

∴∠FBC=∠FDA

2)解:连接DE

∵∠ADB90°AD平分∠BAF

∴△ABF是等腰三角形,

∴∠ABD=∠AFDBF2FD

∵四边形AEDB内接于⊙O

∴∠AED+ABD180°

∵∠AFD+CFB180°

∵∠ABD=∠AFD

∴∠AED=∠CFB

∵∠FBC=∠FAD

∴△AED∽△BFC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线x轴交于AD两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(10),点B的坐标为(04),已知点Em0)是线段DO上的动点,过点EPE⊥x轴交抛物线于点P,交BC于点G,交BD于点H

1)求该抛物线的解析式;

2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;

3)在(2)的条件下,是否存在这样的点P,使得以PBG为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八(1)班学生为了了解某小区家庭月均用水情况,随机调查了该小区部分家庭并将调查数据进行整理,请你根据提供的信息,解答下列问题:

级别

A

B

C

D

E

F

月均用水量xt

0x≤5

5x≤10

10x≤15

15x≤20

20x≤25

25x≤30

频数(户)

6

12

m

10

4

2

频率

0.12

n

0.32

0.2

0.08

0.04

1)本次调查采用的方式是   (选填普查抽样调查),m   n   

2)请你补充频数分布直方图;

3)若将月平均用水量的频数绘制成扇形统计图,则月均用水量15≤x≤20”的圆心角度数是   °

4)若该小区共有5000户家庭,求该小区月均用水量超过15t的家庭大约有多少户?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自习课上小明在准备完成题目:化简:( x2+6x+8)-6x+8x2+2)发现系数印刷不清楚、

1)他把猜成6,请你帮小明完成化简:(6x2+6x+8)-6x+8x2+2)

2)小明同桌看到他化简的结果说:你猜错了,我看到该题标准答案的结果是常数。请你通过计算说明原题中是几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是⊙O的内接三角形,∠C30°,⊙O的半径是6,若点P是⊙O上的一点,,则PA的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果店以每千克8元的价格收购苹果若干千克,销售了部分苹果后,余下的苹果以每千克降价4元销售,全部售完。销售金额y(元)与销售量x(千克)之间的关系如图所示。请根据图象提供的信息完成下列问题:

1)降价前苹果的销售单价是 /千克;

2)求降价后销售金额y(元)与销售量x千克之间的函数解析式,并写出自变量的取值范围;

3)该水果店这次销售苹果盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一次函数yx+3x轴、y轴分别交于点AB,将直线AB向下平移与反比例函数x0)交于点CD,连接BCx轴于点E,连接AC,已知BE3CE,且SACE

1)求直线BC和反比例函数解析式;(2)连接BD,求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知RtABC中,∠ACB90°AC8AB10,点DAC边上一点(不与C重合),以AD为直径作⊙O,过CCE切⊙OE,交ABF

1)若⊙O半径为2,求线段CE的长;

2)若AFBF,求⊙O的半径;

3)如图②,若CECB,点B关于AC的对称点为点G,试求GE两点之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与坐标轴交于A,B两点,在射线AO上有一点P,当APB是以AP为腰的等腰三角形时,点P的坐标是________________.

查看答案和解析>>

同步练习册答案