精英家教网 > 初中数学 > 题目详情

【题目】操作发现:如图1D是等边△ABCBA上的一动点(D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF,易证AF=BD(不需要证明);

类比猜想:①如图2,当动点D运动至等边△ABCBA的延长线上时,其它作法与图1相同,猜想AFBD在图1中的结论是否仍然成立。

深入探究:②如图3,当动点D在等边△ABCBA上的一动点(D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AFBF′你能发现AFBF′AB有何数量关系,并证明你发现的结论。

③如图4,当动点D运动至等边△ABCBA的延长线上时,其它作法与图3相同,猜想AFBF′AB在上题②中的结论是否仍然成立,若不成立,请给出你的结论并证明。

【答案】①成立,证明见详解;②AF+BF′=AB,证明见详解;③不成立,AF=AB+BF′,证明见详解.

【解析】

类比猜想:①通过证明△BCD≌△ACF,即可证明AF=BD

深入探究:②AF+BF′=AB,利用全等三角形△BCD≌△ACFSAS)的对应边BD=AF;同理△BCF′≌△ACDSAS),则BF′=AD,所以AF+BF′=AB

③结论不成立.新的结论是AF=AB+BF′;通过证明△BCF′≌△ACDSAS),则BF′=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF′

解:类比猜想:①如图2中,

∵△ABC是等边三角形(已知),
BC=AC,∠BCA=60°(等边三角形的性质);
同理知,DC=CF,∠DCF=60°
∴∠BCA+DCA=DCF+DCA,即∠BCD=ACF
在△BCD和△ACF中,

∴△BCD≌△ACFSAS),
BD=AF(全等三角形的对应边相等);

深入探究:②如图示

AF+BF′=AB
证明如下:由①条件可知:∠BCA-DCA=DCF-DCA,即∠BCD=ACF

∴同理可证△BCD≌△ACFSAS),则BD=AF
同理△BCF′≌△ACDSAS),则BF′=AD
AF+BF′=BD+AD=AB

③结论不成立.新的结论是AF=AB+BF′

如图示:


证明如下:

∵等边DCF和等边DCF′,由①同理可知:

在△BCF′和△ACD中,

∴△BCF′≌△ACDSAS),
BF′=AD(全等三角形的对应边相等);
又由②知,AF=BD
AF=BD=AB+AD=AB+BF′,即AF=AB+BF′

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴于两点,交轴于点,顶点为,其对称轴交轴于点.直线经过两点,交抛物线的对称轴于点,其中点的横坐标为

(1)求抛物线的表达式;

(2)连接,求的周长;

(3)是抛物线位于直线的下方且在其对称轴左侧上的一点,当四边形的面积最大时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了创建书香校园,去年又购进了一批图书.经了解,科普书的单价比文学书的单价多4元,用1200元购进的科普书与用800元购进的文学书本数相等.

1)求去年购进的文学羽和科普书的单价各是多少元?

2)若今年文学书和科普书的单价和去年相比保持不变,该校打算用1000元再购进一批文学书和科普书,问购进文学书55本后至多还能购进多少本科普书?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题探究)小敏在学习了RtABC的性质定理后,继续进行研究.

1)(i)她发现图①中,如果∠A30°BCAB存在特殊的数量关系是   

ii)她将△ABC沿AC所在的直线翻折得△AHC,如图②,此时她证明了BCAB的关系;请根据小敏证明的思路,补全探究的证明过程;

猜想:如果∠A30°BCAB存在特殊的数量关系是   

证明:△ABC沿AC所在的直线翻折得△AHC

2)如图③,点EF分别在四边形ABCD的边BCCD上,且∠B=∠D90°,连接AEAFEF,将△ABE、△ADF折叠,折叠后的图形恰好能拼成与△AEF完全重合的三角形,连接AC,若∠EAF30°AB227,则△CEF的周长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.

(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?

(2)若单独租用一台车,租用哪台车合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场第一次用元购进某款智能清洁机器人进行销售,很快销售一空,商家又用元第二次购进同款智能清洁机器人,所购进数量是第一次的倍,但单价贵了元.

1)求该商家第一次购进智能清洁机器人多少台?

2)若所有智能清洁机器人都按相同的标价销售,要求全部销售完毕的利润率不低于(不考虑其它因素),那么每台智能清洁机器人的标价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊥BC,DC⊥BC,EBC上一点,使得AE⊥DE;

(1)求证:△ABE∽△ECD;

(2)AB=4,AE=BC=5,求CD的长;

(3)△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,BD,CE分别是AC,AB边上的高,BD, CE交于O,则图中共有相似三角形(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向内旋转35°到达ON位置,此时点A,C的对应位置分别是点B,D,测量出∠ODB=25°,点D到点O的距离为30cm,求滑动支架BD的长.

(结果精确到1cm,参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

查看答案和解析>>

同步练习册答案