精英家教网 > 初中数学 > 题目详情
2.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数n10020030050080010003000
摸到白球的次数m651241783024815991803
摸到白球的频率$\frac{m}{n}$0.650.620.5930.6040.6010.5990.601
请估计:当n很大时,摸到白球的频率将会接近0.6.(精确到0.1)

分析 求出所有试验得出来的频率的平均值即可.

解答 解:(1)摸到白球的频率=(0.65+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,
∴当n很大时,摸到白球的频率将会接近0.6.
故答案为:0.6.

点评 此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,在一张长为5cm,宽为4cm的长方形纸片上,现要剪下一个腰长为3cm的等腰三角形(要求:等腰三角形的一个顶点与长方形的一个顶点重合,其余的两个顶点在长方形的边上),则剪下的等腰三角形的底边的长为3$\sqrt{2}$,2$\sqrt{6}$,$\sqrt{30}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知平行四边形ABCD中,∠B-∠A=40°,则∠D=110°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.请观察下列式子,按要求完成下列题目.
$\frac{1}{{\sqrt{2}+1}}=\frac{{\sqrt{2}-1}}{{(\sqrt{2}+1)(\sqrt{2}-1)}}=\sqrt{2}-1$;$\frac{1}{{\sqrt{3}+\sqrt{2}}}=\frac{{\sqrt{3}-\sqrt{2}}}{{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}}=\sqrt{3}-\sqrt{2}$;$\frac{1}{{2+\sqrt{3}}}=\frac{{2-\sqrt{3}}}{{(2+\sqrt{3})(2-\sqrt{3})}}=2-\sqrt{3}$;$\frac{1}{{\sqrt{5}+2}}=\frac{{\sqrt{5}-2}}{{(\sqrt{5}+2)(\sqrt{5}-2)}}=\sqrt{5}-2$.
试求:
(1)$\frac{1}{{\sqrt{7}+\sqrt{6}}}$的值;
(2)$\frac{1}{{\sqrt{n+1}+\sqrt{n}}}$(n为正整数)的值;
(3)根据上面的规律,试化简下列式子.$\frac{1}{{\sqrt{2}+1}}$+$\frac{1}{{\sqrt{3}+\sqrt{2}}}$+$\frac{1}{{2+\sqrt{3}}}$+…+$\frac{1}{{\sqrt{2011}+\sqrt{2010}}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.设x2+mx+121是一个完全平方式,则常数m=±22.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=$\frac{k}{x}$(x>0)的图象经过顶点B,则k的值为(  )
A.12B.16C.20D.32

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.一只蜜蜂将随意落在如图的方格中,每个小方格形状完全相同,则蜜蜂落在阴影部分的概率是$\frac{5}{12}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.《中华人民共和国个人所得税法》规定,公民月工资所得不超过1600元
(人民币)的部分不必纳税,超过1600元的部分为各月应纳税所得额,超过部分的税款按下表分段累加计算.例如,你月工资是2000元,2000-1600=400,那么就对400元进行纳税,400×5%=20,即你应交纳的税款为20元.若某人1月份应交纳此项税款92元,则她当月的工资是多少?
全月应纳税所得额税率
不超过500元的部分5%
超过500元至2000元的部分10%
超过2000元至5000元的部分15%
超过5000元至20000元的部分20%

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为6$\sqrt{3}$acm.

查看答案和解析>>

同步练习册答案