【题目】如图坐标系中,O(0,0),A(3,3),B(6,0),将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则AC:AD的值是( )
A.1:2B.2:3C.6:7D.7:8
【答案】B
【解析】
过A作AF⊥OB于F,如图所示:根据已知条件得到AF=3,OF=3,OB=6,求得∠AOB=60°,推出△AOB是等边三角形,得到∠AOB=∠ABO=60°,根据折叠的性质得到∠CED=∠OAB=60°,求得∠OCE=∠DEB,根据相似三角形的性质得到BE=OB﹣OE=6﹣=,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,于是得到结论.
过A作AF⊥OB于F,如图所示:
∵A(3,3),B(6,0),
∴AF=3,OF=3,OB=6,
∴BF=3,
∴OF=BF,
∴AO=AB,
∵tan∠AOB=,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴∠AOB=∠ABO=60°,
∵将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,
∴∠CED=∠OAB=60°,
∵∠OCE+∠COE=∠OCE+60°=∠CED+∠DEB=60°+∠DEB,
∴∠OCE=∠DEB,
∴△CEO∽△EDB,
∴==,
∵OE=,
∴BE=OB﹣OE=6﹣=,
设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,
则,,
∴6b=30a﹣5ab①,24a=30b﹣5ab②,
②﹣①得:24a﹣6b=30b﹣30a,
∴,
即AC:AD=2:3.
故选:B.
科目:初中数学 来源: 题型:
【题目】测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)
(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D是BC边的中点,连接AD,分别过点A,C作AE∥BC,CE∥AD交于点E,连接DE,交AC于点O.
(1)求证:四边形ADCE是矩形;
(2)若AB=10,sin∠COE=,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求直线y=3与抛物线交点的坐标;
(2)将矩形ABCD以每秒1个单位长度的速度从图⑴所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图(2)所示).
①当时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE=105°.
(1)求∠CAD的度数;
(2)若⊙O的半径为4,求弧BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售 A、B 两种品牌的彩色电视机,A、B 两种彩电的进价每台分别为2000 元、1600元.一 月 份 A、B 两 种 彩 电 每 台 销 售 价 分 别 为 2700 元、2100 元,月 利 润 为 12000元.为了增加利润,二月份营销人员提供了两种销售策略:
策略一: A 种彩电每台降价100元,B 种彩电每台降价80元,估计月销售量分别增长30%、40%;
策略二: A 种彩电每台降价 150 元,B 种彩电每台降价 100 元,估计月销售量都增长50%.
根据以上信息完成下列各题:
(1)求一月份 A、B 两种彩电的销售量.
(2)二月份这两种策略是否能增加利润?
(3)二月份该商店应该采用上述两种销售策略中的哪一种,方能使商店所获得的利润较多?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.
(1)求这条抛物线相应的函数表达式;
(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;
(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市欲购进一种今年新上市的产品,购进价为20元件,为了调查这种新产品的销路,该超市进行了试销售,得知该产品每天的销售量件与每件的销售价元件之间有如下关系:
请写出该超市销售这种产品每天的销售利润元与x之间的函数关系式,并求出超市能获取的最大利润是多少元.
若超市想获取1500元的利润求每件的销售价.
若超市想获取的利润不低于1500元,请求出每件的销售价X的范围?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com