精英家教网 > 初中数学 > 题目详情

【题目】给定关于 的二次函数
学生甲:当 时,抛物线与 轴只有一个交点,因此当抛物线与 轴只有一个交点时, 的值为3;
学生乙:如果抛物线在 轴上方,那么该抛物线的最低点一定在第二象限;
请判断学生甲、乙的观点是否正确,并说明你的理由.

【答案】解:甲的观点是错误的.
理由如下:当抛物线 轴只有一个交点时

即:
解得
时抛物线 轴只有一个交点
乙的观点是正确的
理由如下:当抛物线在 轴上方时,
由上可得
即:

而对于开口向上的抛物线最低点为其顶点
顶点的横坐标为

,且抛物线在 轴上方,
即抛物线的最低点在第二象限
【解析】根据抛物线与 x 轴只有一个交点,得到-4ac=0,可计算m的值,确定甲的观点是错误的.根据抛物线在 x 轴上方,得到-4ac0,m的范围可求出,抛物线的最低点的位置即可确定。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(12),

1)写出点AB的坐标:A__________)、B__________);

2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△ABC′,写出A′、B′、C′三点坐标;

3)求△ABC的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题的提出:

如果点是锐角内一动点,如何确定一个位置,使点到△ABC的三顶点的距离之和的值为最小?

1)问题的转化:

绕点逆时针旋转得到,连接,这样就把确定的最小值的问题转化成确定的最小值的问题了,请你利用图1证明:

2)问题的解决:

当点到锐角的三顶点的距离之和的值为最小时,求的度数.

问题的延伸:

3)如图2所示,在钝角中,,点是这个三角形内一动点,请你利用以上方法,求点到这个三角形各顶点的距离之和的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.

(1)求证:BD=EC;
(2)若AC=2, , 求菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CBOA,∠C=OAB=124°,EFCB上,且满足∠FOB=AOBOE平分∠COF,∠OEC=COB,则∠OEC=______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2020年拟继续举办丽水市中学生汉字听写、诗词诵写大赛.经过初赛、复赛,选出了两个代表队参加市内7月份的决赛.两个队各选出的名选手的复赛成绩如图所示.

1)根据图示补全下表;

平均数()

中位数()

众数()

2)结合两队成绩的平均数和中位数,分析哪个队的复赛成绩较好;

3)计算两队成绩的方差,并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:(x﹣1+ )÷ ,其中x的值从不等式组 的整数解中选取.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)

A方法:剪6个侧面;

B方法:剪4个侧面和5个底面.

现有38张硬纸板,裁剪时x张用A方法,其余用B方法.

(1)用x的代数式分别表示裁剪出的侧面和底面的个数;

(2)若裁剪出的侧面和底面恰好全部用完,则能做多少个盒子?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图OA平分∠BAC,∠1=2

求证:AOBC

同学甲说:要作辅助线;

同学乙说:要应用角平分线性质定理来解决:

同学丙说:要应用等腰三角形“三线合一”的性质定理来解决.

请你结合同学们的讨论写出证明过程.

查看答案和解析>>

同步练习册答案