【题目】如图,,与的平分线相交于点,于点,为中点,于,.下列说法正确的是( )
①;②;③;④若,则.
A.①③④B.②③C.①②③D.①②③④
【答案】C
【解析】
根据平行线的性质以及角平分线的定义即可得到从而根据三角形的内角和定理得到,即可判断①正确性;根据等角的余角相等可知,再由角平分线的定义与等量代换可知,即可判断②正确性;通过面积的计算方法,由等底等高的三角形面积相等,即可判断③正确性;通过角度的和差计算先求出的度数,再求出,再由三角形内角和定理及补角关系即可判断④是否正确.
①中,∵AB∥CD,
∴,
∵∠BAC与∠DCA的平分线相交于点G,
∴,
∵,
∴
∴AG⊥CG,
则①正确;
②中,由①得AG⊥CG,
∵,,
∴根据等角的余角相等得,
∵AG平分,
∴,
∴,
则②正确;
③中,根据三角形的面积公式,∵为中点,∴AF=CF,∵与等底等高,∴,则③正确;
④中,根据题意,得:在四边形GECH中,,
又∵,
∴,
∵CG平分∠ECH,
∴,
根据直角三角形的两个锐角互余,得.
∵,
∴,
∴,
∵,
∴,
∴,则④错误.
故正确的有①②③,
故选:C.
科目:初中数学 来源: 题型:
【题目】用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁的轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为_____cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6000件,若在国内市场销售,平均每件产品的利润与国内销售量的关系如下表:
销售量(千件) | ||
单件利润(元) |
若在国外销售,平均每件产品的利润与国外的销售数量的关系如下表:
销售量(千件) | ||
单件利润(元) | 100 |
(1)用的代数式表示为:=;
(2)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润为60万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.
(1)求证:△ABE≌△ACF;
(2)若∠BAE=30°,则∠ADC= °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E、 F为AB上的一点,CF⊥AD于H,下列判断正确的有( )
A.AD是△ABE的角平分线B.BE是△ABD边AD上的中线
C.AH为△ABC的角平分线D.CH为△ACD边AD上的高
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1∥l2,分别交l1、l2于A. B两点,点C在直线l2上且在点B的右侧,点D在直线l1上且在点A左侧,点P是直线l3上的动点,且不与A. B重合,设∠DAB=∠α.
(1)如图1,当点P在线段AB上时,求证:∠APC=∠α+∠PCB;
(2)如图2,当点P在线段BA的延长线上时,请写出∠α、∠APC、∠PCB三个角之间的数量关系,并证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中, 对角线AC、BD相交于点O. E、F是对角线AC上的两个不同点,当E、F两点满足下列条件时,四边形DEBF不一定是平行四边形( ).
A.AE=CFB.DE=BFC.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小刚做游戏一个不透明的布袋里装有4个大小、质地均相同的乒乓球,球上分别标有数字1,2,3,4,随机从布袋中摸出一个乒乓球,记下数字后放回布袋里,再随机从布袋中摸出一个乒乓球,若这两个乒乓球上的数字之和能被4整除则小明赢;若两个乒乓球上的数字之和能被5整除则小刚赢;这个一个对游戏双方公平的游戏吗?请列表格或画树状图说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com