【题目】已知如图,AO⊥BC,DO⊥OE.
(1)不添加其他条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);
(2)如果∠COE 350,求∠BOD的度数.
【答案】(1)∠COE∠AOD,∠AOE∠BOD,∠AOB∠DOE;(2)∠BOD=550
【解析】
(1)已知AO⊥BC,DO⊥OE,就是已知∠DOE=∠AOB=∠AOC=90°,利用同角或等角的余角相等,从而得到相等的角.
(2)由(1)知,∠AOD=∠EOC,故可求解.
(1)∵AO⊥BC,DO⊥OE,
∴∠DOE=∠AOB=∠AOC=90°,∠BOD+∠AOD=90°,∠AOD+∠AOE=90°,∠AOE+∠COE=90°,
∴∠DOA=∠EOC,∠DOB=∠AOE,∠AOB=∠AOC,∠AOB=∠DOE,∠AOC=∠DOE;
(2)∵AO⊥BC,DO⊥OE
∴∠BOD1800∠COE 90350550
科目:初中数学 来源: 题型:
【题目】如图,已知AOB是一条直线,OC是∠AOD的平分线,OE 是∠BOD的平分线.
(1)若∠AOE=140°,求∠AOC的度数;
(2)若∠EOD :∠COD=2 : 3,求∠COD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点A表示的数为6,B是数轴上一点,且
.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t()秒.
(1)请写出数轴上点B表示的数 ,点P表示的数 (用含t 的整式表示);
(2)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC纸片中,∠ACB=90°,AC=6,BC=8,P是AB边上一点,连接CP.沿CP把Rt△ABC纸片裁开,要使△ACP是等腰三角形,那么AP的长度是________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面我们做一次折叠活动:
第一步,在一张宽为2的矩形纸片的一端,利用图(1)的方法折出一个正方形,然后把纸片展平,折痕为MC;
第二步,如图(2),把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;
第三步,折出内侧矩形FACB的对角线AB,并将AB折到图(3)中所示的AD处,折痕为AQ.
根据以上的操作过程,完成下列问题:
(1)求CD的长.
(2)请判断四边形ABQD的形状,并说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小英在周末和爸爸妈妈以及爷爷奶奶一行6人,自驾外出旅游,出发前油箱里有油5升,在加油站加140元的油.已知油价是7元/升,目的地距离出发地320千米,正常行驶时,车子的耗油情况是0.42元/千米.
(1)在加油站加油 升;车子的耗油情况换算成 升/千米.
(2)在行驶过程中,设油箱内余油y(升),行驶路程x(千米),将y表示为x的函数.
(3)若油箱里余油量低于5升会自动报警,通过计算回答,小明他们在到达目的地之前,车子是否会自动报警.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠ADC=∠EFC,∠3=∠C,可推得∠1=∠2.理由如下:
解:因为∠ADC=∠EFC(已知)
所以AD∥EF( ).
所以∠1=∠4( ),
因为∠3=∠C(已知),
所以AC∥DG( ).
所以∠2=∠4( ).
所以∠1=∠2(等量代换).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com