精英家教网 > 初中数学 > 题目详情

【题目】RtABC纸片中,∠ACB=90°,AC=6,BC=8,PAB边上一点,连接CP.沿CPRtABC纸片裁开,要使ACP是等腰三角形,那么AP的长度是________

【答案】6,5

【解析】试题解析:①如图:AP″=AC=6时,△ACP″是等腰三角形;

②CP=AP时,△ACP是等腰三角形;

PPE⊥AC,

∵CP=AP,

∴AE=AC=3,

∵∠ACB=90°,

∴PE∥CB,

∴PE=CB=4,

∴AP==5;

③CP′=AC时,△ACP′是等腰三角形,

CCF⊥AB,

∴AP′=2AF,

∵AC=6,

∴CP′=6,

∵∠ACB=90°,AC=6,BC=8,

∴AB=10,

∴cosA=

∴AF=

∴AP′=,

故答案为:6,5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解方程:

我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选两个,并选择你认为适当的方法解这个方程.

我选择第 个方程。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形ABCD的顶点A在原点O处,点B在x轴上,点C的坐标为(6,6),点D在y轴上,动点P,Q各从点A,D同时出发,分别沿AD,DC方向运动,且速度均为每秒1个单位长度.
(1)探索AQ与BP有什么样的关系?并说明理由;
(2)如图2,当点P运动到线段AD的中点处时,AQ与BP交于点E,求线段CE的长.
(3)如图3,设运动t秒后,点P仍在线段AD上,AQ交BD于F,且△BPQ的面积为S,试求S的最小值,及当S取最小值时∠DPF的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠C=90°,BAC=60°,ABC绕点C顺时针旋转,旋转角为α(0°<α<180°),点A、B的对应点分别是点D、E.

(1)如图1,当点D恰好落在边AB上时,试判断DEAC的位置关系,并说明理由.

(2)如图2,当点B、D、E三点恰好在一直线上时,旋转角α=__°,此时直线CEAB的位置关系是__

(3)在(2)的条件下,联结AE,设BDC的面积S1AEC的面积S2,则S1S2的数量关系是_____

(4)如图3,当点B、D、E三点不在一直线上时,(3)中的S1S2的数量关系仍然成立吗?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABCD中,AD=2AB,FBC的中点,作AE⊥CD,垂足E在线段CD上,连结EF、AF,下列结论:①2∠BAF=∠BAD;②EF=AF;③SABF≤SAEF;④∠BFE=3∠CEF.中一定成立的是(  )

A. ①②④ B. ①③ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,AOBC,DOOE.

(1)不添加其他条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);

(2)如果∠COE 350,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按要求解答下列各题

(1)已知a、b 互为相反数,c、d 互为倒数,x=(-2)2

试求x2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值。

(2)已知有理数a、b、c 满足|a-1|+|b-3|+|3c-1|=0,(a×b×c)178 ÷(a36×b7×c6)的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小刘上午从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小刘离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示,则下列说法不正确的是(  )

A. 小刘家与超市相距3000 B. 小刘去超市途中的速度是300/

C. 小刘在超市逗留了30分钟 D. 小刘从超市返回家比从家里去超市的速度快

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:

成绩x/分

频数

频率

50≤x<60

10

0.05

 60≤x<70

30

0.15

 70≤x<80

40

n

 80≤x<90

m

0.35

 90≤x≤100

50

0.25

请根据所给信息,解答下列问题:

(1)m= , n=
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在分数段;
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?

查看答案和解析>>

同步练习册答案