【题目】阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如.善于思考的小明进行了以下探索:
设(其中a、b、m、n均为整数),则有.
∴.这样小明就找到了一种把类似的式子化为平方式的方法。
请你仿照小明的方法探索并解决下列问题:(a,b,m,n均为正整数)
(1),用含m、n的式子分别表示a、b,得:a=___,b=___;
(2)当a=7,n=1时,填空:7+ =( +)2
(3)若,求a的值.
【答案】(1)m2+3n2,2mn(2)4,2 (3)28或12
【解析】
(1)利用完全平方公式展开得到(m+n)2=m2+3n2+2mn,从而可用m、n表示a、b;
(2由(1)可知:n=1,由a=m2+3n2=7,得出m的值,从而得到b的值,然后填空即可;
(3)利用a=m2+3n2,2mn=6和a、m、n均为正整数可先确定m、n的值,然后计算对应的a的值.
(1)(m+n)2=m2+3n2+2mn,∴a=m2+3n2,b=2mn;
(2)由(1)可知:n=1,∴a=m2+3n2=7,解得:m=2(负数舍去),∴m=2,n=1,∴b=2mn =4,∴7+4=(2+)2;
(3)a=m2+3n2,2mn=6.
∵a、m、n均为正整数,∴m=3,n=1或m=1,n=3.
①当m=3,n=1时,a=9+3=12;
②当m=1,n=3时,a=1+3×9=28.
∴a的值为28或12.
科目:初中数学 来源: 题型:
【题目】问题:探究函数y=|x|﹣2的图象与性质.
小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.
下面是小华的探究过程,请补充完整:
(1)在函数y=|x|﹣2中,自变量x可以是任意实数;
(2)如表是y与x的几组对应值
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 1 | 0 | ﹣1 | ﹣2 | ﹣1 | 0 | m | … |
①m等于多少;
②若A(n,2018),B(2020,2018)为该函数图象上不同的两点,则n等于多少;
(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并根据描出的点画出该函数的图象;根据函数图象可得:该函数的最小值为多少;该函数图象与x轴围成的几何图形的面积等于多少;
(4)已知直线y1=x﹣与函数y=|x|﹣2的图象交于C,D两点,当y1≥y时,试确定x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探索:小明在研究数学问题:已知AB∥CD,AB和CD都不经过点P,探索∠P与∠C的数量关系.
发现:在如图中,:∠APC=∠A+∠C;如图
小明是这样证明的:过点P作PQ∥AB
∴∠APQ=∠A(_ __)
∵PQ∥AB,AB∥CD.
∴PQ∥CD(__ _)
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
(1)为小明的证明填上推理的依据;
(2)应用:①在如图中,∠P与∠A、∠C的数量关系为__ _;
②在如图中,若∠A=30 ,∠C=70 ,则∠P的度数为__ _;
(3)拓展:在如图中,探究∠P与∠A,∠C的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将长为1,宽为的长方形纸片如图那样折一下,剪下一个边长等于长方形的宽度的正方形称为第一次操作;再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形称为第二次操作;如些反复操作下去,若在第次操作后剩下的长方形为正方形,则操作终止.
第一次操作后,剩下的长方形两边长分别为______和 ;用含的代数式表示
若第二次操作后,剩下的长方形恰好是正方形,则求的值,写出解答过程;
若第三次操作后,剩下的长方形恰好是正方形,画出图形,试求的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用若干块如左图所示的正方形或长方形纸片拼成图(1)和图(2)
(1)如图(1),若AD=7,AB=8,求与的值;
(2)如图(1),若长方形ABCD的面积为35,其中阴影部分的面积为20,求长方形ABCD的周长;
图(1)
(3)如图(2),若AD的长度为5,AB的长度为.
图(2)
①当=________,=_________时,,的值有无数组;
②当________,_________时,,的值不存在.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把一矩形纸片OABC放入平面直角坐标系xoy中,使OA,OC分别落在x轴、y轴上,现将纸片OABC沿OB折叠,折叠后点A落在点A'的位置,若OA=1,OB=2,则点A'的坐标为( )
A.
B.
C.( )
D.( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与圆O交于点E,连结BE、DE.
(1)若圆的半径是3,∠EBA是30度,求AD的长度.
(2)求证:∠BED=∠C.
(3)若OA=5,AD=8,求切线AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y= 与双曲线y= (k>0,x>0)交于点A,将直线y= 向上平移4个单位长度后,与y轴交于点C,与双曲线y= (k>0,x>0)交于点B,若OA=3BC,则k的值为( )
A.3
B.6
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com