精英家教网 > 初中数学 > 题目详情

【题目】如图,已知∠MON=30°,点A1A2A3在射线ON上,点B1B2B3在射线OM上,A1B1A2A2B2A3A3B3A4均为等边三角形.OA1=1,则A6B6A7的边长为(

A.32B.24C.16D.8

【答案】A

【解析】

根据等腰三角形的性质以及平行线的性质得出A1B1A2B2A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2进而得出答案.

解:∵△A1B1A2是等边三角形,

A1B1=A2B1,∠3=4=12=60°
∴∠2=120°
∵∠MON=30°
∴∠1=180°-120°-30°=30°
又∵∠3=60°
∴∠5=180°-60°-30°=90°
∵∠MON=1=30°
OA1=A1B1=1
A2B1=1
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=10=60°,∠13=60°
∵∠4=12=60°
A1B1A2B2A3B3B1A2B2A3
∴∠1=6=7=30°,∠5=8=90°
A2B2=2B1A2B3A3=2B2A3
A3B3=4B1A2=4
A4B4=8B1A2=8
A5B5=16B1A2=16
以此类推:A6B6=32B1A2=32
故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A(30),B(0-1),连接AB,B点作AB的垂线段,使BA=BC,连接AC.

(1)如图1,求C点坐标;

(2)如图2,P点从A点出发,沿x轴向左平移,连接BP,作等腰直角三角形BPQ,连接CQ.求证:PA=CQ.

(3)(2)的条件下,CPQ三点共线,求此时P点坐标及∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是反比例函数y 在第一象限图象上一点,连接OA,过点AABx轴(点B在点A右侧),连接OB,若OB平分∠AOX,且点B的坐标是(84),则k的值是(  )

A.6B.8C.12D.16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有甲乙两名采购员去同一家饲料公司分别购买两次饲料,两次购买饲料价格分别为m/千克和n/千克,且m≠n,两名采购员的采购方式也不同,其中甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.

(1)甲、乙所购饲料的平均单价各是多少?(用字母mn表示)

(2)谁的购货方式更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,∠C90°BCCD8,过点BEBAB,交CD于点E.若DE6,则AD的长为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABDC中,∠D=B=90°,点OBD的中点,且AO平分∠BAC.

(1)求证:CO平分∠ACD;

(2)求证:OAOC;

(3)求证:AB+CD=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题:有两个角和第三个角的平分线对应相等的两个三角形全等;有两条边和第三条边上的中线对应相等的两个三角形全等;有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是(  )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中Aa,0),B0b),且a,b满足.

(1) (2)

1AB坐标分别为A( ) B( ).

2Px轴上一点,CAB中点,∠APC=PBO,AP的长.

3)如图2,点E为第一象限一点,AE=AB,以AE为斜边构造等腰直角△AFE,连BE,连接OF并延长交BE于点G,求证:BG=EG.

查看答案和解析>>

同步练习册答案