【题目】如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.
(1)求此抛物线的解析式;
(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.
①用含m的代数式表示线段PD的长.
②连接PB,PC,求△PBC的面积最大时点P的坐标.
(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.
【答案】(1)y=x2﹣4x+3;(2)①﹣m2+3m,②(,﹣);(3)存在,点M的坐标为(2,3),( 2,1﹣2)或(2,1+2)
【解析】
(1)根据已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0)代入即可求解;
(2)①先确定直线BC解析式,根据过点P作y轴的平行线交直线BC于点D,即可用含m的带上书表示出P和D的坐标进而求解;
②用含m的代数式表示出△PBC的面积,可得S是关于m的二次函数,即可求解;
(3)根据(1)中所得二次函数图象和对称轴先得点E的坐标即可写出点三个位置的点M的坐标.
解:(1)∵抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C,
∴,
解得:;
∴抛物线解析式为:y=x2﹣4x+3;
(2)如图:
①设P(m,m2﹣4m+3),
将点B(3,0)、C(0,3)代入得直线BC解析式为yBC=﹣x+3.
∵过点P作y轴的平行线交直线BC于点D,
∴D(m,﹣m+3),
∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.
答:用含m的代数式表示线段PD的长为﹣m2+3m.
②S△PBC=S△CPD+S△BPD
=OBPD=﹣m2+m
=﹣(m﹣)2+.
∴当m=时,S有最大值.
当m=时,m2﹣4m+3=﹣.
∴P(,﹣).
答:△PBC的面积最大时点P的坐标为(,﹣).
(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.
根据题意,点E(2,1),
∴EF=CF=2,
∴EC=,
根据菱形的四条边相等,
∴ME=EC=,
∴M(2,1﹣)或(2,1+)
当EM=EF=2时,M(2,3)
∴点M的坐标为M1(2,3),M2(2,1﹣2),M3(2,1+2).
科目:初中数学 来源: 题型:
【题目】如图,在平面角坐标系xOy中,有一个等腰直角三角形△AOB,∠OAB=90°,直角边AO在x轴上,且AO=1,将Rt△AOB绕原点O顺时针旋转90°后,再将各边长扩大一倍,得到等腰直角三角形A1OB1;将Rt△A1OB1绕原点O顺时针转90°后,再将各边长扩大一倍,得到等腰三角形A2OB2......依此规律,得到等腰直角三角形A2017OB2017,则点B2017的坐标_________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】这是一个古老的传说,讲一个犯人利用概率来增加他得到宽恕的机会.给他两个碗,一个里面装着5个黑球,另一个里面装着除颜色不同外其它都一样的5个白球.把他的眼睛蒙着,然后要选择一个碗,并从里面拿出一个球,如果他拿的是黑球就要继续关在监狱里面,如果他拿的是白球,就将获得自由.在蒙住眼睛之前允许他把球混合,重新分装在两个碗内(两个碗球数可以不同).你能设想一下这个犯人怎么做,使得自己获得自由的机会最大?则犯人获得自由的最大机会是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了参加西部博览会,资阳市计划印制一批宣传册.该宣传册每本共10页,由A、B两种彩页构成.已知A种彩页制版费300元/张,B种彩页制版费200元/张,共计2400元.(注:彩页制版费与印数无关)
(1)每本宣传册A、B两种彩页各有多少张?
(2)据了解,A种彩页印刷费2.5元/张,B种彩页印刷费1.5元/张,这批宣传册的制版费与印刷费的和不超过30900元.如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形ABCD的对角线AC,BD相交于点O,AC=16,BD=12,动点P在线段AC上从点A向点C以4个单位/秒的速度运动,过点P作EF⊥AC,交菱形ABCD的边于点E、F,在直线AC上有一点G,使△AEF与△GEF关于EF对称.设菱形ABCD被四边形AEGF盖住部分的面积为S1,未被盖住部分的面积为S2,点P运动时间为x秒.
(1)用含x的代数式分别表示S1,S2;
(2)若S1=S2,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,中,为内一点,将绕点按逆时针方向旋转角得到,点的对应点分别为点,且三点在同一直线上.
(1)填空: (用含的代数式表示);
(2)如图2,若,请补全图形,再过点作于点,然后探究线段之间的数量关系,并证明你的结论;
(3)若,且点满足,直接写出点到的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片ABCD中,AB=8,AD=17,折叠纸片使点B落在边AD上的E处,折痕为PQ.当E在AD边上移动时,折痕的端点P,Q也随着移动.若限定P,Q分别在边BA,BC上移动,则点E在边AD上移动的最大距离为( )
A.6B.7C.8D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,平面直角坐标系中,直线 y1=x+3与抛物线y2=﹣+2x 的图象如图,点P是 y2 上的一个动点,则点P到直线 y1 的最短距离为()
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,AC=BC,点P在边AB上,点D、Q分别为边BC上的点,线段AD的延长线与线段PQ的延长线交于点F,连接CP交AF于点E,若∠BPF=∠APC,FD=FQ.
(1)如图1,求证:AF⊥CP;
(2)如图2,作∠AFP的平分线FM交AB于点M,交BC于点N,若FN=MN,求证:;
(3)在(2)的条件下,连接DM、MQ,分别交PC于点G、H,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com