【题目】如图1,中,为内一点,将绕点按逆时针方向旋转角得到,点的对应点分别为点,且三点在同一直线上.
(1)填空: (用含的代数式表示);
(2)如图2,若,请补全图形,再过点作于点,然后探究线段之间的数量关系,并证明你的结论;
(3)若,且点满足,直接写出点到的距离.
科目:初中数学 来源: 题型:
【题目】如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.
(1)写出所有个位数字是5的“两位递增数”;
(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E、F分别是BC,CD边上的动点,且CE+CF=4,DE和AF相交于点P,在点E,F运动的过程中,CP的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.
(1)求此抛物线的解析式;
(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.
①用含m的代数式表示线段PD的长.
②连接PB,PC,求△PBC的面积最大时点P的坐标.
(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中(如图),已知抛物线与x轴交于点A(-1,0)和点B,与y轴交于点C(0,-2).
(1)求该抛物线的表达式,并写出其对称轴
(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标
(3)点D为该抛物线的顶点,设点P(t, 0),且t>3,如果△BDP和△CDP的面积相等,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=50°,则∠BDE= °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】洛阳某科技公司生产和销售A、B两类套装电子产品已知3套A类产品和2套B类产品的总售价是24万元;2套A类产品和3套B类产品的总售价是26万元公司生产一套A类产品的成品是万元,生产B类产品的成本如下表:
套数 | 1 | 2 | 3 | 4 | |
总成本万元 | 8 | 12 | 16 | 20 |
该公司A类产品和B类产品的销售单价分别是多少万元?
①公司为了方便生产,只安排生产一类电子产品,且销售顺利,设生产销售该类电子产品x套:公司销售x套A类产品的利润________;公司销售x套B类产品的利润________.
②怎样安排生产,才能使公司获得的利润较高?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个盒子中装有2个红球,1个白球和1个蓝球,这些球除颜色外都相同,小明和小凡准备用这些球做游戏,游戏规则如下:从盒子中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,若两次摸到的球的颜色都是红色,小明胜;若两次摸到的球的颜色能配成紫色,则小凡胜,这个游戏对双方公平吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com