精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,点是线段上的动点,将线段绕点逆时针旋转得到线段,连接.若已知,设两点间的距离为两点间的距离为两点间的距离为.(若同学们打印的BC的长度如不是,请同学们重新画图、测量)

小明根据学习函数的经验,分别对自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整:

1)按照下表中自变量的值进行取点、画图、测量,分别得到了的几组对应值,如下表:

0

1

2

3

4

5

6

7

8

7.03

6.20

5.44

4.76

4.21

3.85

3.73

3.87

4.26

5.66

4.32

1.97

1.59

2.27

3.43

4.73

写出的值.(保留1位小数

2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出函数的图象;

3)结合函数图像,解决问题:

①当在线段上时,的长度约为________

②当为等腰三角形时,的长度约为_______

【答案】1;(2)见详解;(3)①6;②3

【解析】

1)当时,,即可求解

2)描点作出图像即可.

3)①当在线段上时,即:;②分三种情况分别求解.

1)当时,点B与点D重合,cm

,测量出cm

2)描绘后表格如下图:

3)①当在线段上时,即:

从图像可以看出,当时,cm

故答案为:6.

②当时,即:,此时0,当得不到三角形,故

时,即:,在图上画出直线,此时

时,即:,从上图可以看出cm

故答案为:3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合与实践

问题情境

数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,是两个全等的直角三角形纸片,其中

解决问题

1)如图①,智慧小组将绕点顺时针旋转,发现当点恰好落在边上时,,请你帮他们证明这个结论;

2)缜密小组在智慧小组的基础上继续探究,连接,当C绕点继续旋转到如图②所示的位置时,他们提出,请你帮他们验证这一结论是否正确,并说明理由;

探索发现

3)如图③,勤奋小组在前两个小组的启发下,继续旋转,当三点共线时,求的长;

4)在图①的基础上,写出一个边长比为的三角形(可添加字母).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:. 设这种产品每天的销售利润为w元.

(1)求w与x之间的函数关系式;

(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=x2+x1x轴交于点AB(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线ly=tt)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.

1)求点ABD的坐标

2)如图①,抛物线翻折后,点D落在点E处.当点EABC内(含边界)时,求t的取值范围;

3)如图②,当t=0时,若Q“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,直接写出出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:

方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.

1)若a=6

①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?

②按图乙的方案,能围成的矩形花圃的最大面积是多少?

2)若0a6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,边上的动点(不与点重合),将沿所在的直线翻折,得到,连接,则下列判断:

①当时,

②当时,

③当时,

长度的最小值是1

其中正确的判断是______(填入正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtAOB的平分线ON上依次取点C,F,M,过点CDEOC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则yx之间的函数关系式是( )

A. y= B. y= C. y=2 D. y=3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.

收集数据

从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:

甲 78 86 74 81 75 76 87 70 75 90

75 79 81 70 74 80 86 69 83 77

乙 93 73 88 81 72 81 94 83 77 83

80 81 70 81 73 78 82 80 70 40

整理、描述数据

按如下分数段整理、描述这两组样本数据:

成绩

人数

部门

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

0

0

1

11

7

1

(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)

分析数据

两组样本数据的平均数、中位数、众数如下表所示:

得出结论:

.估计乙部门生产技能优秀的员工人数为____________;

.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.

(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;

(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.

查看答案和解析>>

同步练习册答案

部门

平均数

中位数

众数

78.3

77.5

75

78

80.5

81