【题目】某公司用6000元购进A,B两种电话机25台,购买A种电话机与购买B种电话机的费用相等.已知A种电话机的单价是B种电话机单价的1.5倍.
(1)求A,B两种电话机的单价各是多少?
(2)若计划用不超过8000元的资金再次购进A,B两种话机共30台,已知A,B两种电话机的进价不变,求最多能购进多少台A种电话机?
【答案】(1)A种电话机的单价是300元,B种电话机的单价是200元.(2)最多能购进20台A种电话机.
【解析】
(1)设B种电话机的单价是x元,则A种电话机的单价是1.5x元,根据数量=总价÷单价结合用6000元购进A,B两种电话机25台(且购买A种电话机与购买B种电话机的费用相等),即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设购进m台A种电话机,则购进(30﹣m)台B种电话机,根据总价=单价×数量结合总价不超过8000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
解:(1)设B种电话机的单价是x元,则A种电话机的单价是1.5x元,
依题意,得:=25,
解得:x=200,
经检验,x=200是原方程的解,且符合题意,
∴1.5x=300.
答:A种电话机的单价是300元,B种电话机的单价是200元.
(2)设购进m台A种电话机,则购进(30﹣m)台B种电话机,
依题意,得:300m+200(30﹣m)≤8000,
解得:m≤20.
答:最多能购进20台A种电话机.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=5,连接AC,O是AC的中点,M是AD上一点,且MD=1,P是BC上一动点,则PM﹣PO的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.
(1)当BP= 时,△MBP~△DCP;
(2)当⊙P与正方形ABCD的边相切时,求BP的长;
(3)设⊙P的半径为x,请直接写出正方形ABCD中恰好有两个顶点在圆内的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,A(0,8),B(4,0),直线y=﹣x沿x轴作平移运动,平移时交OA于D,交OB于C.
(1)当直线y=﹣x从点O出发以1单位长度/s的速度匀速沿x轴正方向平移,平移到达点B时结束运动,过点D作DE⊥y轴交AB于点E,连接CE,设运动时间为t(s).
①是否存在t值,使得△CDE是以CD为腰的等腰三角形?如果能,请直接写出相应的t值;如果不能,请说明理由.
②将△CDE沿DE翻折后得到△FDE,设△EDF与△ADE重叠部分的面积为y(单位长度的平方).求y关于t的函数关系式及相应的t的取值范围;
(2)若点M是AB的中点,将MC绕点M顺时针旋转90°得到MN,连接AN,请直接写出AN+MN的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与y轴交于点A(0,-4),与x轴交于点B(-2,0),C(8,0),连接AB,AC.
(1)求出二次函数表达式;
(2)若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AB,交AC于点M,连接AN,当以点A,M,N为顶点的三角形与以点A,B,O为顶点的三角形相似时,求此时点N的坐标;
(3)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与y轴交于点A(0,6),与x轴交于点B(﹣2,0),C(6,0).
(1)直接写出抛物线的解析式及其对称轴;
(2)如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P作PD⊥AC于点E,交x轴于点D,过点P作PG∥AB交AC于点F,交x轴于点G.设线段DG的长为d,求d与m的函数关系式,并注明m的取值范围;
(3)在(2)的条件下,若△PDG的面积为,
①求点P的坐标;
②设M为直线AP上一动点,连接OM交直线AC于点S,则点M在运动过程中,在抛物线上是否存在点R,使得△ARS为等腰直角三角形?若存在,请直接写出点M及其对应的点R的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线经过点和,点的坐标为,点是线段上的动点(点不与点重合),直线经过点,并与交于点,过点作,交于点.
(1)求的函数表达式;
(2)当时,
①求点的坐标;
②求.
(3)将点的横坐标记为,在点移动的过程中,直接写出的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com