分析 根据绝对值的意义得到|x+y+z+1|=x+y+z+1或|x+y+z+1|=-(x+y+z+1),则x+y+z+1=x+y-z-2或-(x+y+z+1)=x+y-z-2,解得z=-$\frac{3}{2}$或x+y=$\frac{1}{2}$,然后把z=-$\frac{3}{2}$或x+y=$\frac{1}{2}$分别代入$({x+y-\frac{1}{2}})({2z+3})$中计算即可.
解答 解:∵|x+y+z+1|=x+y+z+1或|x+y+z+1|=-(x+y+z+1),
∴x+y+z+1=x+y-z-2或-(x+y+z+1)=x+y-z-2,
∴z=-$\frac{3}{2}$或x+y=$\frac{1}{2}$,
当z=-$\frac{3}{2}$时,$({x+y-\frac{1}{2}})({2z+3})$=(x+y-$\frac{1}{2}$)[2×(-$\frac{3}{2}$)+3]=0;
当x+y=$\frac{1}{2}$时,$({x+y-\frac{1}{2}})({2z+3})$=($\frac{1}{2}$-$\frac{1}{2}$)(2z+3)=0,
综上所述,$({x+y-\frac{1}{2}})({2z+3})$的值为0.
故答案为0.
点评 本题考查了绝对值:当a是正数时,a的绝对值是它本身a; 当a是负数时,a的绝对值是它的相反数-a; 当a是零时,a的绝对值是零.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ①②③ | B. | ①③④ | C. | ②④ | D. | ①③ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com