【题目】已知E、F分别为正方形ABCD的边BC、CD上的点,且∠EAF=45°.
(1)如图①求证:BE+DF=EF;
(2)连接BD分别交AE、AF于M、N,
①如图②,若AB=6,BM=3,求MN.
②如图③,若EF∥BD,求证:MN=CE.
【答案】(1)证明见解析;(2)①5;②证明见解析.
【解析】
(1)延长CB到G,使GB=DF,连接AG,求证△ABG≌△ADF,得∠3=∠2,AG=AF,进而求证△AGE≌△AFE,可得GB+BE=EF,所以DF+BE=EF.
(2)①如图2,把△ABM绕点A逆时针旋转90°得到△ADM′,连接NM′.就可以得出△ABM≌△ADM′,就有∠BAM=∠DAM′,就可以得出△AMN≌△AM′N就可以得出MN=M′N,由勾股定理就可以得出结论MN2=DN2+BM2;
②设正方形ABCD的边长为a,求出MN,EC即可判断;
(1)证明:证明:延长CB到G,使GB=DF,连接AG(如图1),
∵AB=AD,∠ABG=∠D=90°,GB=DF,
∴△ABG≌△ADF(SAS),
∴∠3=∠2,AG=AF,
∵∠BAD=90°,∠EAF=45°,
∴∠1+∠2=45°,
∴∠GAE=∠1+∠3=45°=∠EAF,
∵AE=AE,∠GAE=∠EAF,AG=AF,
∴△AGE≌△AFE(SAS),
∴GB+BE=EF,
∴DF+BE=EF;
(2)①解:如图2,在正方形ABCD中,AB=AD,∠BAD=90°,
∴∠ABM=∠ADN=45°.
把△ABM绕点A逆时针旋转90°得到△ADM'.连结NM'.
∴△ABM≌△ADM′(旋转不变性),
∴DM'=BM,AM'=AM,∠ADM'=∠ABM=45°,∠DAM'=∠BAM.
∴∠ADB+∠ADM′=45°+45°=90°,
即∠NDM′=90°.
∵∠EAF=45°,
∴∠BAM+∠DAN=45°,
∴∠DAM′+∠DAF=45°,
即∠M′AN=45°,
∴∠M'AN=∠MAN.
在△AMN和△AM′N中
,
∴△AMN≌△AM′N(SAS),
∴M'N=MN.
∵∠NDM′=90°,
∴M'N2=DN2+DM'2,
∴MN2=DN2+BM2;
设MN=x,则DN=12﹣3﹣x=9﹣x,
∴x2=33+(9﹣x)2,
∴x=5,
∴NM=5;
②证明:如图3中,设正方形ABCD的边长为a.
∵EF∥BD,
∴∠CEF=∠CBD=45°,∠CFE=∠CDB=45°,
∴∠CEF=∠CFE=45°,
∴CE=CF,
∴BE=DF,
∵AB=AD,∠ABE=∠ADF,BE=DF,
∴△ABE≌△ADF(SAS),
∴∠BAE=∠DAF,
∵∠EAF=45°,
∴∠BAE=∠DAF=22.5°,
∴∠AEB=∠BME=67.5°,
∴BM=BE,同理可证:DN=DF,
∴BM=DN=BE=DF,设BM=x,则MN=x,
∴2x+x=a,
∴x=(﹣1)a,
∴MN=(2﹣)a,EC=BC﹣BE=(2﹣)a,
∴MN=EC.
科目:初中数学 来源: 题型:
【题目】如图,用火柴棒摆出一列正方形图案,第①个图案用了 4 根,第②个图案用了 12 根,第③个图案用了 24 根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是( )
A. 84 B. 81 C. 78 D. 76
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上点在原点的左边,到原点的距离为4,点在原点右边,从点走到点,要经过16个单位长度.
(1)写出、两点所对应的数;
(2)若点也是数轴上的点,点到点的距离是点到原点距离的3倍,求对应的数;
(3)已知点从点开始向右出发,速度每秒1个单位长度,同时从点开始向右出发,速度每秒2个单位长度,设线段的中点为,线段的值是否会发生变化?若会,请说明理由,若不会,请求出求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面内的两条直线有相交和平行两种位置关系.
(1)如图1,若,点在外部,则有,又可证,得,将点移到内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则之间有何数量关系?请证明你的结论;
(2)在如图2中,将直线绕点逆时针方向旋转一定角度交直线于点如图3,则之间有何数量关系? (不需证明);
(3)根据(2)的结论,求如图4中的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,沿折线ABCD方向以3cm/s的速度匀速运动;点Q从点D出发,沿线段DC方向以2cm/s的速度匀速运动. 已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为t(s).
(1)求CD的长;
(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;
(3)在点P、Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角△ABC中,AC=BC>3,点M在AC上,点N在CB的延长线上,MN交AB于点O,且AM=BN=3,则S△AMO与S△BNO的差是( )
A.9
B.4.5
C.0
D.无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,,点在射线上,.
(1)如图 1,若,求的度数;
(2)把“°”改为“”,射线 沿射线 平移,得到,其它条件不变(如 图 2 所示),探究 的数量关系;
(3)在(2)的条件下,作,垂足为 ,与 的角平分线 交于点,若 , 用含 α 的式子表示(直接写出答案).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com