精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EGG,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠CGE=2∠DFB,其中正确的结论有(  )个

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

根据平行线的性质及角平分线的可判定①;②由已知条件无法判定;③根据直角三角形的两锐角互余及同角(或等角)的余角相等即可判定③;④根据三角形外角的性质及四边形的内角和求得∠DFE=135°,即可得∠DFB=45°,由此即可判定④.

①∵EG∥BC,

∴∠CEG=∠ACB,

又∵CD是△ABC的角平分线,

∴∠CEG=∠ACB=2∠DCB,①正确;

②无法证明CA平分∠BCG,②错误;

③∵∠A=90°,

∴∠ADC+∠ACD=90°,

∵CD平分∠ACB,

∴∠ACD=∠BCD,

∴∠ADC+∠BCD=90°.

∵EG∥BC,且CG⊥EG,

∴∠GCB=90°,即∠GCD+∠BCD=90°,

∴∠ADC=∠GCD,③项正确;

④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,

∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,

∴∠DFE=360°-135°-90°=135°,

∴∠DFB=45°=∠CGE,

∠CGE=2∠DFB,④项正确.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A、B的坐标分别为(0,2),(1,0),直线y=﹣3与坐标轴交于C、D两点.

(1)求直线AB:y=kx+bCD交点E的坐标;

(2)直接写出不等式kx+b>﹣3的解集;

(3)求四边形OBEC的面积;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)已知一个多边形的内角和是它的外角和的 3 倍,求这个多边形的边数.

(2)如图,点F ABC 的边 BC 延长线上一点.DFAB,A=30°,F=40°,求∠ACF 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,E、F分别为线段AC上的两个点,且DEAC于点E,BFAC于点F,若AB=CD,AE=CF,BDAC于点M.

(1)试猜想DEBF的关系,并证明你的结论;

(2)求证:MB=MD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC的中点,过D点的直线GFACF,交AC的平行线BGG点,DE⊥DF,交AB于点E,连结EGEF

1)求证:BGCF

2)请你判断BE+CFEF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,点 D AB的中点.

(1)如果点 P 在线段 BC 上以 1cm/s 的速度由点 B 向点 C 运动,同时,点 Q 在线段 CA 上由点 C 向点 A 运动.

若点 Q 的运动速度与点 P 的运动速度相等,经过 1 秒后,△BPD △CQP 是否全等,请说明理由;

若点 Q 的运动速度与点 P 的运动速度不相等,当点 Q 的运动速度为多少时,能够使△BPD △CQP 全等?

(2)若点 Q 以②中的运动速度从点 C 出发,点 P 以原来的运动速度从点 B 同时出发,都逆时针沿△ABC 三边运动,则经过 后,点 P 与点 Q 第一次在△ABC 的 边上相遇?(在横线上直接写出答案,不必书写解题过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四个规模不同的滑梯ABCD , 它们的滑板长(平直的)分别为300m , 250m , 200m , 200m;滑板与地面所成的角度分别为30°,45°,45°,60°,则关于四个滑梯的高度正确说法(  )

A.A的最高
B.B的最高
C.C的最高
D.D的最高

查看答案和解析>>

同步练习册答案