精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料并回答问题.我们知道,,如果两个含有二次根式的非零代数式相乘,它们的积不含二次根式,就说这两个非零代数式互为有理化因式.如互为有理化因式,互为有理化因式.根据互为有理化因式的积是有理数,可以将分母中含有二次根式的代数式化为分母是有理数的代数式,这个过程称为分母有理化.例如:.请解答下列问题:

1分母有理化的结果是 分母有理化的结果是

2)计算:

3)若实数,判断的大小,并说明理由.

【答案】1 ;(23;(3,理由见解析

【解析】

1)直接利用有理化因式的概念分析得出答案;
2)利用有理化因式的概念化简求出答案;
3)直接利用有理化因式的概念化简求出答案.

解:(1

2

3

理由如下:

计算:

.即

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC的三边分别切⊙OD,E,F.

(1)若∠A=40°,求∠DEF的度数;

(2)AB=AC=13,BC=10,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了美化环境,建设魅力呼和浩特,呼和浩特市准备在一个广场上种植甲、乙两种花卉经市场调查,甲种花卉的种植费用 (元)与种植面积之间的函数关系如图所示乙种花卉的种植费用为每平方米100

1)直接写出当时,的函数关系式.

2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,EF 是平行四边形 ABCD 的对角线 AC 上的两点,AE=CF

求证:(1EB DF

2EBDF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在□ABCD 中,以点 A 为圆心,AB 长为半径画弧交 AD 于点 F,再分别以点 BF 为圆心,大于BF 的相同长为半径画弧,两弧交于点 P,连接 AP 并延长交 BC 于点 E,连接 EF

1)根据以上尺规作图的过程,证明四边形 ABEF 是菱形;

2)若菱形 ABEF 的边长为 2AE 2 ,求菱形 ABEF 的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一水池的容积V(公升)与注入水的时间t(分钟)之间开始是一次函数关系,表中记录的是这段时间注入水的时间与水池容积部分对应值.

注入水的时间t(分钟)

0

10

25

水池的容积V(公升)

100

300

600

(1)求这段时间时V关于t的函数关系式(不需要写出函数的定义域);

(2)t25分钟开始,每分钟注入的水量发生变化了,到t27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,等腰直角三角形AOB在如图所示的位置,点B的横坐标为2,将△AOB绕点O按逆时针方向旋转90°,得到△AOB′,则点A′的坐标为(  )

A. (1,1) B.

C. (﹣1,1) D. (﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的横坐标是a,则点B的横坐标是( )

A. - B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有两个全等的含30°角的直角三角板重叠在一起,如图,将ABC′绕AC的中点M转动,斜边AB′刚好过ABC的直角顶点C,且与ABC的斜边AB交于点N,连接AA′、CCAC′.若AC的长为2,有以下五个结论:AA′=1;CCAB′;N是边AB的中点;四边形AACC′为矩形;AN=BC=,其中正确的有(  )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

同步练习册答案