精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论: ①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正确的个数有(

A.1
B.2
C.3
D.4

【答案】B
【解析】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误; ∵图象开口向上,∴a>0,
∵对称轴在y轴右侧,
∴a,b异号,
∴b<0,
∵图象与y轴交于x轴下方,
∴c<0,
∴abc>0,故②正确;
当x=﹣1时,a﹣b+c>0,故此选项错误;
∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,
∴关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,则m>﹣2,
故④正确.
故选:B.
【考点精析】解答此题的关键在于理解二次函数图象以及系数a、b、c的关系的相关知识,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,下列n(n为正整数)个关于x的一元二次方程: ①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,,…

(1)上述一元二次方程的解为①________,②________,③________,④________.

(2)猜想:第n个方程为________,其解为________.

(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设点A(x1 , y1)和点B(x2 , y2)是反比例函数y= 图象上的两点,当x1<x2<0时,y1>y2 , 则一次函数y=﹣2x+k的图象不经过的象限是(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.

(1)求证:CBG≌△CDG;

(2)求HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;

(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+2的图象与反比例函数y= 的图象交于P、G两点,过点P作PA⊥x轴,一次函数图象分别交x轴、y轴于C、D两点, = ,且SADP=6.
(1)求点D坐标;
(2)求一次函数和反比例函数的表达式;
(3)根据图象直接写出一次函数值小于反比例函数值时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按要求完成下列证明

已知:如图,ABCD直线AECD于点CBAC+CDF=180°.

求证:AEDF.

证明: ABCD____________________________

∴∠BAC=DCE__________________________________________________________________________.

BAC+CDF=180°(已知),

____________ +CDF=180°____________________________________.

AEDF______________________________________________________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,ADBCEAB边上一点,BCE=15°,EFADDC于点F.

(1)依题意补全图形,求∠FEC的度数

(2)若∠A=140°,求∠AEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图A在数轴上对应的数为2,若点B也在数轴上且线段AB的长为4,CAB的中点则点C在数轴上对应的数为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点OOE平分∠BOD

1∠AOC=70°∠DOF=90°,求∠EOF的度数;

2OF平分∠COE∠BOF=15°,若设∠AOE=x°

用含x的代数式表示∠EOF;

∠AOC的度数.

查看答案和解析>>

同步练习册答案