精英家教网 > 初中数学 > 题目详情

【题目】某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10

1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;

2)求销售单价为多少元时,该文具每天的销售利润最大;

3)商场的营销部结合上述情况,提出了AB两种营销方案

方案A:该文具的销售单价高于进价且不超过30元;

方案B:每天销售量不少于10件,且每件文具的利润至少为25

请比较哪种方案的最大利润更高,并说明理由

【答案】(1) w=-10x2700x10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;

(3) A方案利润更高.

【解析】

试题(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.

2)根据(1)式列出的函数关系式,运用配方法求最大值.

3)分别求出方案ABx的取值范围,然后分别求出AB方案的最大利润,然后进行比较.

解:(1w=(x20)(25010x250)=-10x2700x10000.

2∵w=-10x2700x10000=-10x3522250

x35时,w有最大值2250

即销售单价为35元时,该文具每天的销售利润最大.

3A方案利润高,理由如下:

A方案中:20x≤30,函数w=-10x3522250x的增大而增大,

x=30时,w有最大值,此时,最大值为2000.

B方案中:,解得x的取值范围为:45≤x≤49.

∵45≤x≤49时,函数w=-10x3522250x的增大而减小,

x=45时,w有最大值,此时,最大值为1250.

∵20001250

∴A方案利润更高

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P ACPC,∠COB2PCB

1)求证:PC是⊙O的切线;

2)求证:BCAB

3)点M是弧AB的中点,CMAB于点N,若AB8,求MN·MC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在函数x0)的图象上,有点,若的横坐标为a,且以后每点的横坐标与它前面一个点的横坐标的差都为2,过点分别作x轴、y轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为,则=______+++…+=__________.(用n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线ACBD相交于点O.将∠COB绕点O顺时针旋转,设旋转角为α0α90°),角的两边分别与BCAB交于点MN,连接DMCNMN,下列四个结论:①∠CDM=∠COM;②CNDM;③CNB≌△DMC;④AN2+CM2MN2;其中正确结论的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得AC之间的距离为6cm,点BD之间的距离为8cm,则线段AB的长为(  )

A.5 cmB.4.8 cmC.4.6 cmD.4 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣3,顶点为E,该抛物线与x轴交于A,B两点,与y轴交子点C,且OB=OC=3OA,直线y=﹣x+1与y轴交于点D.求∠DBC﹣∠CBE=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M为抛物线x轴的焦点为A(-3,0),B(1,0),与y轴交于点C,连结AM,AC,点D为线段AM上一动点(不与A重合),以CD为斜边在CD上侧作等腰RtDEC,连结AE,OE.

(1)求抛物线的解析式及顶点M的坐标;

(2)求解AD:OE的值;

(3)当OEC为直角三角形时,求AD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于二次函数有下列说法:①如果m=2,则y有最小值3;②如果当x=1时的函数值与x=2018时的函数值相等,则当x=2019时的函数值是3;③如果m>0,则当yx的增大而减小,则④如果该二次函数有最小值T,则T的最大值是1,其中正确的说法是________.

查看答案和解析>>

同步练习册答案