精英家教网 > 初中数学 > 题目详情

【题目】对于二次函数有下列说法:①如果m=2,则y有最小值3;②如果当x=1时的函数值与x=2018时的函数值相等,则当x=2019时的函数值是3;③如果m>0,则当yx的增大而减小,则④如果该二次函数有最小值T,则T的最大值是1,其中正确的说法是________.

【答案】②③④

【解析】

根据二次函数的性质,逐一判定,首先将m=2代入,然后配方求出顶点式,即可判定最小值;根据题意,两个函数值相等,即关于对称轴对称,则可判定x=0x=2019关于对称轴对称,即可得解;③根据函数的增减性,即可得出,即可得解;④由①中得知该函数有最小值,则可得解.

①当m=2时,y,配方得,则当m=2,则y有最小值1,故①错.②如果当x=1时的函数值与x=2018时的函数值相等,则x=1x=2018关于对称轴对称,则x=0x=2019关于对称轴对称,则x=0时,y=3;故②正确,③如果m>0,则当yx的增大而减小,则m+2,则0<m,故③正确,④由可知该二次函数有最小值为1,则T的最大值为1.故④正确。故正确答案为②③④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10

1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;

2)求销售单价为多少元时,该文具每天的销售利润最大;

3)商场的营销部结合上述情况,提出了AB两种营销方案

方案A:该文具的销售单价高于进价且不超过30元;

方案B:每天销售量不少于10件,且每件文具的利润至少为25

请比较哪种方案的最大利润更高,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中,ABC的三个顶点分别为A(﹣43),B(﹣12),C(﹣21.

1)画出ABC关于原点O对称的A1B1C1,并写出点A1B1C1的坐标;

2)画出ABC绕原点O顺时针方向旋转90°得到的A2B2C2,并写出点A2B2C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下面的内容,再解决问题:

例题:若m2+2mn+2n26n+90,求mn的值.

m2+2mn+2n26n+90m2+2mn+n2+n26n+90

∴(m+n2+n320m+n0n30m=﹣3n3

根据你的观察,探究下面的问题:

1)若x2+4x+4+y28y+160,求的值.

2)试说明不论xy取什么有理数时,多项式x2+y22x+2y+3的值总是正数.

3)已知abcABC的三边长,满足a2+b210a+8b41,且cab都大,求c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列的网格图中.每个小正方形的边长均为1个单位,在RtABC中,∠C=90°,AC=3,BC=4.

(1)试在图中作出ABCA为旋转中心,沿顺时针方向旋转90°后的图形AB1C1

(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;

(3)根据(2)中的坐标系作出与ABC关于原点对称的图形A2B2C2,并标出B2、C2两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=-x+3x轴、y轴分别交于AB两点,抛物线y=-x2+bx+c经过AB两点,点P在线段OA上,从点O出发,向点A1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.

1)求抛物线的解析式;

2)问:当t为何值时,△APQ为直角三角形;

3)过点PPE∥y轴,交AB于点E,过点QQF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;

4)设抛物线顶点为M,连接BPBMMQ,问:是否存在t的值,使以BQM为顶点的三角形与以OBP为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在下列n×n的正方形网格中,请按图形的规律,探索以下问题:

1)第个图形中阴影部分小正方形的个数为

2)是否存在阴影部分小正方形的个数是整个图形中小正方形个数的?如果存在,是第几个图形;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个批发商销售成本为20/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:

售价x(元/千克)


50

60

70

80


销售量y(千克)


100

90

80

70


1)求yx的函数关系式;

2)该批发商若想获得4000元的利润,应将售价定为多少元?

3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】4张背面相同的纸牌ABCD,其正面画的图形分别是等边三角形、平行四边形、菱形和矩形,将这4张纸牌洗匀后,背面朝上放在桌面上.

(1)随机地摸出一张,求摸出牌面图形是中心对称图形的概率;

(2)随机地摸出一张,不放回,洗匀后再摸一张,求摸出两张牌面图形都是轴对称图形的纸牌的概率,请用画树状图或列表法说明理由(纸牌可用ABCD表示)

查看答案和解析>>

同步练习册答案